Mohab Soliman, Mohamed Shedid, Hala Abd El-Hameed, Hosny Abou-Ziyan
{"title":"Experimental Investigation of the Effect of Condenser Configuration on a Horizontally Rotating Wickless Heat Pipe Performance","authors":"Mohab Soliman, Mohamed Shedid, Hala Abd El-Hameed, Hosny Abou-Ziyan","doi":"10.1615/jenhheattransf.2024053008","DOIUrl":null,"url":null,"abstract":"This experimental study investigates the effect of condenser configurations on the thermal performance and operational characteristics of a horizontally rotating heat pipe. The investigated parameters include three condenser lengths (112.5, 150, and 187.5mm), outer condenser conical ends (60, 80, and 100), and inside condenser tapered angles (1, 2, and 3). An experimental apparatus was designed, constructed, and commissioned with nine condenser sections to explore the effect of condenser configuration on the steady-state thermal performance of heat pipes. The heat pipe is tested at a constant speed of 1500 rpm and various heat loads ranging from 25-200 W, using water as the working fluid. Results indicated that under a constant filling charge equals the inside evaporator volume, the best condenser length of the heat pipe equals the evaporator length. On the other hand, under a variable filling charge equals 0.25 the inside pipe volume, the best condenser length equals 1.25 the evaporator length. The condenser with a conical end of 60 enhances the heat pipe performance by about 37.5-60% over the plain condenser. However, the condenser with a tapered angle of 3 produces the best heat pipe thermal performance compared to the conical end or the different-length condensers. The tapered condenser with an angle of 3 enhances the heat pipe thermal conductivity over the plain condenser by 33.3-257.8%. Also, it achieved higher thermal conductivity than the condenser with a conical end of 60 by 16.6-125.0%.","PeriodicalId":50208,"journal":{"name":"Journal of Enhanced Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enhanced Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2024053008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This experimental study investigates the effect of condenser configurations on the thermal performance and operational characteristics of a horizontally rotating heat pipe. The investigated parameters include three condenser lengths (112.5, 150, and 187.5mm), outer condenser conical ends (60, 80, and 100), and inside condenser tapered angles (1, 2, and 3). An experimental apparatus was designed, constructed, and commissioned with nine condenser sections to explore the effect of condenser configuration on the steady-state thermal performance of heat pipes. The heat pipe is tested at a constant speed of 1500 rpm and various heat loads ranging from 25-200 W, using water as the working fluid. Results indicated that under a constant filling charge equals the inside evaporator volume, the best condenser length of the heat pipe equals the evaporator length. On the other hand, under a variable filling charge equals 0.25 the inside pipe volume, the best condenser length equals 1.25 the evaporator length. The condenser with a conical end of 60 enhances the heat pipe performance by about 37.5-60% over the plain condenser. However, the condenser with a tapered angle of 3 produces the best heat pipe thermal performance compared to the conical end or the different-length condensers. The tapered condenser with an angle of 3 enhances the heat pipe thermal conductivity over the plain condenser by 33.3-257.8%. Also, it achieved higher thermal conductivity than the condenser with a conical end of 60 by 16.6-125.0%.
期刊介绍:
The Journal of Enhanced Heat Transfer will consider a wide range of scholarly papers related to the subject of "enhanced heat and mass transfer" in natural and forced convection of liquids and gases, boiling, condensation, radiative heat transfer.
Areas of interest include:
■Specially configured surface geometries, electric or magnetic fields, and fluid additives - all aimed at enhancing heat transfer rates. Papers may include theoretical modeling, experimental techniques, experimental data, and/or application of enhanced heat transfer technology.
■The general topic of "high performance" heat transfer concepts or systems is also encouraged.