{"title":"Realistic Facial Age Transformation with 3D Uplifting","authors":"X. Li, G. C. Guarnera, A. Lin, A. Ghosh","doi":"10.1111/cgf.15146","DOIUrl":null,"url":null,"abstract":"<div>\n <p>While current facial re-ageing methods can produce realistic results, they purely focus on the 2D age transformation. In this work, we present an approach to transform the age of a person in both facial appearance and shape across different ages while preserving their identity. We employ an α-(de)blending diffusion network with an age-to-α transformation to generate coarse structure changes, such as wrinkles. Additionally, we edit biophysical skin properties, including melanin and hemoglobin, to simulate skin color changes, producing realistic re-ageing results from ages 10 to 80 years. We also propose a geometric neural network that alters the coarse scale facial geometry according to age, followed by a lightweight and efficient network that adds appropriate skin displacement on top of the coarse geometry. Both qualitative and quantitative comparisons show that our method outperforms current state-of-the-art approaches.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15146","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
While current facial re-ageing methods can produce realistic results, they purely focus on the 2D age transformation. In this work, we present an approach to transform the age of a person in both facial appearance and shape across different ages while preserving their identity. We employ an α-(de)blending diffusion network with an age-to-α transformation to generate coarse structure changes, such as wrinkles. Additionally, we edit biophysical skin properties, including melanin and hemoglobin, to simulate skin color changes, producing realistic re-ageing results from ages 10 to 80 years. We also propose a geometric neural network that alters the coarse scale facial geometry according to age, followed by a lightweight and efficient network that adds appropriate skin displacement on top of the coarse geometry. Both qualitative and quantitative comparisons show that our method outperforms current state-of-the-art approaches.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.