SAfEPaTh: A System-Level Approach for Efficient Power and Thermal Estimation of Convolutional Neural Network Accelerator

Yukai Chen, Simei Yang, Debjyoti Bhattacharjee, Francky Catthoor, Arindam Mallik
{"title":"SAfEPaTh: A System-Level Approach for Efficient Power and Thermal Estimation of Convolutional Neural Network Accelerator","authors":"Yukai Chen, Simei Yang, Debjyoti Bhattacharjee, Francky Catthoor, Arindam Mallik","doi":"arxiv-2407.17623","DOIUrl":null,"url":null,"abstract":"The design of energy-efficient, high-performance, and reliable Convolutional\nNeural Network (CNN) accelerators involves significant challenges due to\ncomplex power and thermal management issues. This paper introduces SAfEPaTh, a\nnovel system-level approach for accurately estimating power and temperature in\ntile-based CNN accelerators. By addressing both steady-state and\ntransient-state scenarios, SAfEPaTh effectively captures the dynamic effects of\npipeline bubbles in interlayer pipelines, utilizing real CNN workloads for\ncomprehensive evaluation. Unlike traditional methods, it eliminates the need\nfor circuit-level simulations or on-chip measurements. Our methodology\nleverages TANIA, a cutting-edge hybrid digital-analog tile-based accelerator\nfeaturing analog-in-memory computing cores alongside digital cores. Through\nrigorous simulation results using the ResNet18 model, we demonstrate SAfEPaTh's\ncapability to accurately estimate power and temperature within 500 seconds,\nencompassing CNN model accelerator mapping exploration and detailed power and\nthermal estimations. This efficiency and accuracy make SAfEPaTh an invaluable\ntool for designers, enabling them to optimize performance while adhering to\nstringent power and thermal constraints. Furthermore, SAfEPaTh's adaptability\nextends its utility across various CNN models and accelerator architectures,\nunderscoring its broad applicability in the field. This study contributes\nsignificantly to the advancement of energy-efficient and reliable CNN\naccelerator designs, addressing critical challenges in dynamic power and\nthermal management.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design of energy-efficient, high-performance, and reliable Convolutional Neural Network (CNN) accelerators involves significant challenges due to complex power and thermal management issues. This paper introduces SAfEPaTh, a novel system-level approach for accurately estimating power and temperature in tile-based CNN accelerators. By addressing both steady-state and transient-state scenarios, SAfEPaTh effectively captures the dynamic effects of pipeline bubbles in interlayer pipelines, utilizing real CNN workloads for comprehensive evaluation. Unlike traditional methods, it eliminates the need for circuit-level simulations or on-chip measurements. Our methodology leverages TANIA, a cutting-edge hybrid digital-analog tile-based accelerator featuring analog-in-memory computing cores alongside digital cores. Through rigorous simulation results using the ResNet18 model, we demonstrate SAfEPaTh's capability to accurately estimate power and temperature within 500 seconds, encompassing CNN model accelerator mapping exploration and detailed power and thermal estimations. This efficiency and accuracy make SAfEPaTh an invaluable tool for designers, enabling them to optimize performance while adhering to stringent power and thermal constraints. Furthermore, SAfEPaTh's adaptability extends its utility across various CNN models and accelerator architectures, underscoring its broad applicability in the field. This study contributes significantly to the advancement of energy-efficient and reliable CNN accelerator designs, addressing critical challenges in dynamic power and thermal management.
SAfEPaTh:高效卷积神经网络加速器功率和热估计的系统级方法
由于复杂的功耗和热管理问题,设计高能效、高性能和可靠的卷积神经网络(CNN)加速器面临巨大挑战。本文介绍了 SAfEPaTh,这是一种系统级方法,用于准确估算基于线性模型的 CNN 加速器的功耗和温度。通过处理稳态和暂态场景,SAfEPaTh 有效捕捉了层间流水线中流水线气泡的动态影响,并利用真实的 CNN 工作负载进行了全面评估。与传统方法不同,它无需进行电路级仿真或片上测量。我们的方法利用了 TANIA,这是一种基于数字模拟瓦片的尖端混合加速器,配备了模拟内存计算内核和数字内核。通过使用 ResNet18 模型的严格仿真结果,我们证明了 SAfEPaTh 能够在 500 秒内准确估算功率和温度,包括 CNN 模型加速器映射探索和详细的功率和温度估算。这种效率和准确性使 SAfEPaTh 成为设计人员的宝贵工具,使他们能够在遵守严格的功率和热约束的同时优化性能。此外,SAfEPaTh 的适应性扩展了其在各种 CNN 模型和加速器架构中的用途,突显了其在该领域的广泛适用性。这项研究为推动高能效、可靠的 CNN 加速器设计,解决动态功率和热管理方面的关键挑战做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信