Multiple Blowing-Up Solutions for Asymptotically Critical Lane-Emden Systems on Riemannian Manifolds

Wenjing Chen, Zexi Wang
{"title":"Multiple Blowing-Up Solutions for Asymptotically Critical Lane-Emden Systems on Riemannian Manifolds","authors":"Wenjing Chen, Zexi Wang","doi":"10.1007/s12220-024-01722-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((\\mathcal {M},g)\\)</span> be a smooth compact Riemannian manifold of dimension <span>\\(N\\ge 8\\)</span>. We are concerned with the following elliptic system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta _g u+h(x)u=v^{p-\\alpha \\varepsilon }, \\ \\ &amp;{}\\text{ in }\\ \\mathcal {M},\\\\ -\\Delta _g v+h(x)v=u^{q-\\beta \\varepsilon }, \\ \\ &amp;{}\\text{ in }\\ \\mathcal {M},\\\\ u,v&gt;0, \\ \\ &amp;{}\\text{ in }\\ \\mathcal {M}, \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(\\Delta _g=div_g \\nabla \\)</span> is the Laplace–Beltrami operator on <span>\\(\\mathcal {M}\\)</span>, <i>h</i>(<i>x</i>) is a <span>\\(C^1\\)</span>-function on <span>\\(\\mathcal {M}\\)</span>, <span>\\(\\varepsilon &gt;0\\)</span> is a small parameter, <span>\\(\\alpha ,\\beta &gt;0\\)</span> are real numbers, <span>\\((p,q)\\in (1,+\\infty )\\times (1,+\\infty )\\)</span> satisfies <span>\\(\\frac{1}{p+1}+\\frac{1}{q+1}=\\frac{N-2}{N}\\)</span>. Using the Lyapunov–Schmidt reduction method, we obtain the existence of multiple blowing-up solutions for the above problem.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01722-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((\mathcal {M},g)\) be a smooth compact Riemannian manifold of dimension \(N\ge 8\). We are concerned with the following elliptic system

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _g u+h(x)u=v^{p-\alpha \varepsilon }, \ \ &{}\text{ in }\ \mathcal {M},\\ -\Delta _g v+h(x)v=u^{q-\beta \varepsilon }, \ \ &{}\text{ in }\ \mathcal {M},\\ u,v>0, \ \ &{}\text{ in }\ \mathcal {M}, \end{array} \right. \end{aligned}$$

where \(\Delta _g=div_g \nabla \) is the Laplace–Beltrami operator on \(\mathcal {M}\), h(x) is a \(C^1\)-function on \(\mathcal {M}\), \(\varepsilon >0\) is a small parameter, \(\alpha ,\beta >0\) are real numbers, \((p,q)\in (1,+\infty )\times (1,+\infty )\) satisfies \(\frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}\). Using the Lyapunov–Schmidt reduction method, we obtain the existence of multiple blowing-up solutions for the above problem.

黎曼曼频域上渐近临界 Lane-Emden 系统的多重炸裂解
让(((\mathcal {M},g)\) 是维数为(N\ge 8\)的光滑紧凑黎曼流形。我们关注以下椭圆系统-Delta _g u+h(x)u=v^{p-\alpha \varepsilon }, \\ &{}\text{ in }\\mathcal {M},\\ -Delta _g v+h(x)v=u^{q-\beta \varepsilon }, \\ &;{}text{ in }\mathcal {M},u,v>0, (end{array})\right。\end{aligned}$ 其中(Delta _g=div_g \nabla \)是在(mathcal {M})上的拉普拉斯-贝尔特拉米算子,h(x)是在(mathcal {M})上的(C^1)函数,(varepsilon >;0)是一个小参数,(α,\beta >0)都是实数,((p,q)在(1,+\infty)次(1,+\infty))满足(\frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}\)。利用莱普诺夫-施密特还原法,我们得到了上述问题的多重炸毁解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信