Existence and properties of soliton solution for the quasilinear Schrödinger system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue Zhang, Jing Zhang
{"title":"Existence and properties of soliton solution for the quasilinear Schrödinger system","authors":"Xue Zhang, Jing Zhang","doi":"10.1515/math-2024-0022","DOIUrl":null,"url":null,"abstract":"In this article, we consider the following quasilinear Schrödinger system: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\left\\{\\begin{array}{ll}-\\varepsilon \\Delta u+u+\\frac{k}{2}\\varepsilon \\left[\\Delta \\hspace{-0.25em}{| u| }^{2}]u=\\frac{2\\alpha }{\\alpha +\\beta }{| u| }^{\\alpha -2}u{| v| }^{\\beta },&amp; x\\in {{\\mathbb{R}}}^{N},\\\\ -\\varepsilon \\Delta v+v+\\frac{k}{2}\\varepsilon \\left[\\Delta \\hspace{-0.25em}{| v| }^{2}]v=\\frac{2\\beta }{\\alpha +\\beta }{| u| }^{\\alpha }{| v| }^{\\beta -2}v,&amp; x\\in {{\\mathbb{R}}}^{N},\\end{array}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ε</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo>&lt;</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\varepsilon \\gt 0,k\\lt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> are real constants, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>N\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\alpha ,\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula> are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [<jats:italic>Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_999.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> </jats:italic>, J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({u}_{\\varepsilon },{v}_{\\varepsilon })</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the above system, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>({u}_{\\varepsilon }\\left(x),{v}_{\\varepsilon }\\left(x))\\to \\left(0,0)</jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∣</m:mo> <m:mi>ε</m:mi> <m:mo>∣</m:mo> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>| \\varepsilon | \\to 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the following quasilinear Schrödinger system: ε Δ u + u + k 2 ε [ Δ u 2 ] u = 2 α α + β u α 2 u v β , x R N , ε Δ v + v + k 2 ε [ Δ v 2 ] v = 2 β α + β u α v β 2 v , x R N , \left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{\alpha +\beta }{| u| }^{\alpha -2}u{| v| }^{\beta },& x\in {{\mathbb{R}}}^{N},\\ -\varepsilon \Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{\alpha +\beta }{| u| }^{\alpha }{| v| }^{\beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right. where ε > 0 , k < 0 \varepsilon \gt 0,k\lt 0 are real constants, N 3 N\ge 3 , α , β \alpha ,\beta are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R N {{\mathbb{R}}}^{N} , J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution ( u ε , v ε ) \left({u}_{\varepsilon },{v}_{\varepsilon }) for the above system, and ( u ε ( x ) , v ε ( x ) ) ( 0 , 0 ) ({u}_{\varepsilon }\left(x),{v}_{\varepsilon }\left(x))\to \left(0,0) as ε 0 | \varepsilon | \to 0 .
准线性薛定谔系统孤子解的存在与性质
在本文中,我们考虑以下准线性薛定谔系统: - ε Δ u + u + k 2 ε [ Δ ∣ u ∣ 2 ] u = 2 α α + β ∣ u ∣ α - 2 u ∣ v ∣ β , x∈ R N 、 - ε Δ v + v + k 2 ε [ Δ ∣ v ∣ 2 ] v = 2 β α + β ∣ u ∣ α ∣ v ∣ β - 2 v 、 x∈ R N , \left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{alpha +\beta }{u| }^{\alpha -2}u{| v| }^{beta },& x\in {{\mathbb{R}}}^{N},\ -\varepsilon\Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{alpha +\beta }{| u| }^{\alpha }{| v| }^{beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right. 其中 ε > 0 , k < 0 \varepsilon \gt 0,k\lt 0 都是实常数,N ≥ 3 N\ge 3 , α , β \alpha ,\beta 都是常数 2 的整数倍。通过使用 Abbas Moameni [Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R N {{mathbb{R}}}^{N}] 提出的合适 Orlicz 空间中的山口定理,J. 微分方程 229 (J. Differential Equations 229).Differential Equations 229 (2006), 570-587], 我们证明了上述系统存在孤子解 ( u ε , v ε ) \left({u}_{\varepsilon },{v}_{\varepsilon }), 且 ( u ε ( x ) , v ε ( x ) ) → ( 0 , 0 ) ({u}_{v}_{varepsilon }\left(x))\to \left(0,0) as ∣ ε ∣ → 0 | \varepsilon | \to 0 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信