Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu
{"title":"Characterizations of minimal elements of upper support with applications in minimizing DC functions","authors":"Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu","doi":"10.1515/math-2024-0030","DOIUrl":null,"url":null,"abstract":"In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on XX (where XX is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.