Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds

IF 1 3区 数学 Q1 MATHEMATICS
Andrea Galasso, Chin-Yu Hsiao
{"title":"Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds","authors":"Andrea Galasso, Chin-Yu Hsiao","doi":"10.1007/s00209-024-03561-1","DOIUrl":null,"url":null,"abstract":"<p>Given a CR manifold with non-degenerate Levi form, we show that the operators of the functional calculus for Toeplitz operators are complex Fourier integral operators of Szegő type. As an application, we establish semi-classical asymptotics for the dimension of the spectral spaces of Toeplitz operators. We then consider a CR manifold with a compact Lie group action <i>G</i> and we establish quantization commutes with reduction for Toeplitz operators. Moreover, we also compute semi-classical asymptotics for the dimension of the spectral spaces of <i>G</i>-invariant Toeplitz operators.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03561-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a CR manifold with non-degenerate Levi form, we show that the operators of the functional calculus for Toeplitz operators are complex Fourier integral operators of Szegő type. As an application, we establish semi-classical asymptotics for the dimension of the spectral spaces of Toeplitz operators. We then consider a CR manifold with a compact Lie group action G and we establish quantization commutes with reduction for Toeplitz operators. Moreover, we also compute semi-classical asymptotics for the dimension of the spectral spaces of G-invariant Toeplitz operators.

CR 流形上托普利兹算子的函数微积分和量化与还原相通
给定一个具有非退化列维形式的 CR 流形,我们证明托普利兹算子的函数微积分算子是 Szegő 型的复傅里叶积分算子。作为应用,我们建立了托普利兹算子谱空间维度的半经典渐近线。然后,我们考虑了一个具有紧凑李群作用 G 的 CR 流形,并为托普利兹算子建立了量子化与还原的对应关系。此外,我们还计算了 G 不变托普利兹算子谱空间维度的半经典渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信