Automorphism group functors of algebraic superschemes

IF 1 3区 数学 Q1 MATHEMATICS
A. N. Zubkov
{"title":"Automorphism group functors of algebraic superschemes","authors":"A. N. Zubkov","doi":"10.1007/s00209-024-03572-y","DOIUrl":null,"url":null,"abstract":"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}(X)\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\({\\mathbb {X}}\\)</span> is a proper superscheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> of <span>\\({\\mathbb {X}}\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\(H^1(X, {\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X)=0\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\({\\mathbb {X}}\\)</span> and <span>\\({\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> is a smooth group superscheme.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03572-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor \(\mathfrak {Aut}(X)\) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if \({\mathbb {X}}\) is a proper superscheme, then the automorphism group functor \(\mathfrak {Aut}({\mathbb {X}})\) of \({\mathbb {X}}\) is a locally algebraic group superscheme. Moreover, we also show that if \(H^1(X, {\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X)=0\), where X is the geometric counterpart of \({\mathbb {X}}\) and \({\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X\) is the tangent sheaf of X, then \(\mathfrak {Aut}({\mathbb {X}})\) is a smooth group superscheme.

代数超hemes的自形群函数
松村-奥尔特(Matsumura-Oort)的著名定理指出,如果 X 是一个合适的方案,那么 X 的自变群函子(\mathfrak {Aut}(X)\) 是一个局部代数群方案。在本文中,我们把这个定理推广到了超方案范畴,即如果 \({\mathbb {X}}\) 是一个合适的超方案,那么 \({\mathbb {X}}\) 的自变量群函子 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个局部代数群超方案。此外,我们还证明了如果 \(H^1(X, {\mathchoice\{text{ T }}{text{ T }}\{text{ T }}{text{ T }}_X)=0\)、其中 X 是 \({\mathbb {X}}\) 的几何对应物,\({/mathchoice{\text{ T }}{text{ T }}{text{ T }}{text{ T }}\_X) 是 X 的切线剪切,那么 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个光滑群超群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信