{"title":"Automorphism group functors of algebraic superschemes","authors":"A. N. Zubkov","doi":"10.1007/s00209-024-03572-y","DOIUrl":null,"url":null,"abstract":"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}(X)\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\({\\mathbb {X}}\\)</span> is a proper superscheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> of <span>\\({\\mathbb {X}}\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\(H^1(X, {\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X)=0\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\({\\mathbb {X}}\\)</span> and <span>\\({\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> is a smooth group superscheme.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03572-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor \(\mathfrak {Aut}(X)\) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if \({\mathbb {X}}\) is a proper superscheme, then the automorphism group functor \(\mathfrak {Aut}({\mathbb {X}})\) of \({\mathbb {X}}\) is a locally algebraic group superscheme. Moreover, we also show that if \(H^1(X, {\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X)=0\), where X is the geometric counterpart of \({\mathbb {X}}\) and \({\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X\) is the tangent sheaf of X, then \(\mathfrak {Aut}({\mathbb {X}})\) is a smooth group superscheme.
松村-奥尔特(Matsumura-Oort)的著名定理指出,如果 X 是一个合适的方案,那么 X 的自变群函子(\mathfrak {Aut}(X)\) 是一个局部代数群方案。在本文中,我们把这个定理推广到了超方案范畴,即如果 \({\mathbb {X}}\) 是一个合适的超方案,那么 \({\mathbb {X}}\) 的自变量群函子 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个局部代数群超方案。此外,我们还证明了如果 \(H^1(X, {\mathchoice\{text{ T }}{text{ T }}\{text{ T }}{text{ T }}_X)=0\)、其中 X 是 \({\mathbb {X}}\) 的几何对应物,\({/mathchoice{\text{ T }}{text{ T }}{text{ T }}{text{ T }}\_X) 是 X 的切线剪切,那么 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个光滑群超群。