Depth-3 circuits for inner product

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Mika Göös, Ziyi Guan, Tiberiu Mosnoi
{"title":"Depth-3 circuits for inner product","authors":"Mika Göös,&nbsp;Ziyi Guan,&nbsp;Tiberiu Mosnoi","doi":"10.1016/j.ic.2024.105192","DOIUrl":null,"url":null,"abstract":"<div><p>What is the <span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-circuit complexity (depth 3, bottom-fanin 2) of the 2<em>n</em>-bit inner product function? The complexity is known to be exponential <span><math><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>n</mi></mrow></msup></math></span> for some <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. We show that the limiting constant <span><math><mi>α</mi><mo>≔</mo><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mspace></mspace><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies<span><span><span><math><mn>0.847</mn><mo>.</mo><mo>.</mo><mo>.</mo><mspace></mspace><mo>≤</mo><mspace></mspace><mi>α</mi><mspace></mspace><mo>≤</mo><mspace></mspace><mn>0.965</mn><mo>.</mo><mo>.</mo><mo>.</mo><mspace></mspace><mo>.</mo></math></span></span></span> Determining <em>α</em> is one of the seemingly-simplest open problems about depth-3 circuits. The question was recently raised by Golovnev, Kulikov, and Williams (ITCS 2021) and Frankl, Gryaznov, and Talebanfard (ITCS 2022), who observed that <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0.5</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. To obtain our improved bounds, we analyse a covering LP that captures the <span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-complexity up to polynomial factors. In particular, our lower bound is proved by constructing a feasible solution to the dual LP.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"300 ","pages":"Article 105192"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000579/pdfft?md5=d971ff1d4b55c2511084a32e393fcc6e&pid=1-s2.0-S0890540124000579-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000579","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

What is the Σ32-circuit complexity (depth 3, bottom-fanin 2) of the 2n-bit inner product function? The complexity is known to be exponential 2αnn for some αn=Ω(1). We show that the limiting constant αlimsupαn satisfies0.847...α0.965.... Determining α is one of the seemingly-simplest open problems about depth-3 circuits. The question was recently raised by Golovnev, Kulikov, and Williams (ITCS 2021) and Frankl, Gryaznov, and Talebanfard (ITCS 2022), who observed that α[0.5,1]. To obtain our improved bounds, we analyse a covering LP that captures the Σ32-complexity up to polynomial factors. In particular, our lower bound is proved by constructing a feasible solution to the dual LP.

内积的深度-3 电路
2 位内积函数的电路复杂度(深度 3,底扇形 2)是多少?众所周知,在某个......条件下,复杂度是指数级的。我们证明,极限常数满足 确定是关于深度 3 电路的一个看似最简单的未决问题。这个问题最近由 Golovnev、Kulikov 和 Williams(ITCS 2021)以及 Frankl、Gryaznov 和 Talebanfard(ITCS 2022)提出,他们观察到 .为了得到改进后的下界,我们分析了一种覆盖 LP,它能捕捉到多项式因子的复杂性。特别是,我们的下界是通过构建对偶 LP 的可行解来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信