The v-numbers and linear presentations of ideals of covers of graphs

Humberto Muñoz-George, Enrique Reyes, Rafael H. Villarreal
{"title":"The v-numbers and linear presentations of ideals of covers of graphs","authors":"Humberto Muñoz-George, Enrique Reyes, Rafael H. Villarreal","doi":"arxiv-2407.15206","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph and let $J=I_c(G)$ be its ideal of covers. The aims of\nthis work are to study the {\\rm v}-number ${\\rm v}(J)$ of $J$ and to study when\n$J$ is linearly presented using combinatorics and commutative algebra. We\nclassify when ${\\rm v}(J)$ attains its minimum and maximum possible values in\nterms of the vertex covers of the graph that satisfy the exchange property. If\nthe cover ideal of a graph has a linear presentation, we express its v-number\nin terms of the covering number of the graph. We show necessary and sufficient\nconditions for the graph $\\mathcal{G}_J$ of $J$ to be connected. One of our\nmain theorems shows that if $G$ has no induced 4-cycles, then $J$ is linearly\npresented. To prove this theorem, we show three results about unmixed K\\\"onig\ngraphs related to some results already in the literature. For unmixed graphs\nwithout $3$- and $5$-cycles, we classify combinatorially when $J$ is linearly\npresented, and show that the columns of the linear syzygy matrix of $J$ are\nlinearly independent if and only if $\\mathcal{G}_J$ has no strong $3$-cycles.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a graph and let $J=I_c(G)$ be its ideal of covers. The aims of this work are to study the {\rm v}-number ${\rm v}(J)$ of $J$ and to study when $J$ is linearly presented using combinatorics and commutative algebra. We classify when ${\rm v}(J)$ attains its minimum and maximum possible values in terms of the vertex covers of the graph that satisfy the exchange property. If the cover ideal of a graph has a linear presentation, we express its v-number in terms of the covering number of the graph. We show necessary and sufficient conditions for the graph $\mathcal{G}_J$ of $J$ to be connected. One of our main theorems shows that if $G$ has no induced 4-cycles, then $J$ is linearly presented. To prove this theorem, we show three results about unmixed K\"onig graphs related to some results already in the literature. For unmixed graphs without $3$- and $5$-cycles, we classify combinatorially when $J$ is linearly presented, and show that the columns of the linear syzygy matrix of $J$ are linearly independent if and only if $\mathcal{G}_J$ has no strong $3$-cycles.
图盖理想的 v 数和线性呈现
让 $G$ 是一个图,让 $J=I_c(G)$ 是它的理想包络。这项工作的目的是研究 $J$ 的 {\rm v} 数 ${\rm v}(J)$,并利用组合学和交换代数学研究当 $J$ 是线性呈现时的情况。当 ${\rm v}(J)$达到满足交换性质的图顶点覆盖的最小值和最大值时,我们将对其进行分类。如果图的覆盖理想具有线性表示,我们就用图的覆盖数来表示它的 v 数。我们展示了 $J$ 的图 $\mathcal{G}_J$ 连接的必要条件和充分条件。我们的主要定理之一表明,如果 $G$ 没有诱导 4 循环,那么 $J$ 是线性呈现的。为了证明这个定理,我们展示了与文献中已有的一些结果相关的关于非混合 Kiggraphs 的三个结果。对于没有 3$- 和 5$- 循环的非混合图,我们对 $J$ 是线性呈现的情况进行了组合分类,并证明了当且仅当 $\mathcal{G}_J$ 没有强 3$- 循环时,$J$ 的线性对称矩阵的列是线性独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信