Optimal rejection of bounded perturbations in linear leader-following consensus protocol: invariant ellipsoid method

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Siyuan Wang, Andrey Polyakov, Min Li, Gang Zheng, Driss Boutat
{"title":"Optimal rejection of bounded perturbations in linear leader-following consensus protocol: invariant ellipsoid method","authors":"Siyuan Wang, Andrey Polyakov, Min Li, Gang Zheng, Driss Boutat","doi":"10.1007/s11432-023-4042-1","DOIUrl":null,"url":null,"abstract":"<p>The objective of the invariant ellipsoid method is to minimize the smallest invariant and attractive set of a linear control system operating under the influence of bounded external disturbances. This study extends the application of this method to address the leader-following consensus problem. Initially, a linear control protocol is designed for the multi-agent system in the absence of disturbances. Subsequently, in the presence of bounded disturbances, by employing a similar linear control protocol, a necessary and sufficient condition is introduced to derive the optimal control parameters for the multi-agent system such that the state of followers converges to and remains in a minimal invariant ellipsoid around the state of the leader.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4042-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the invariant ellipsoid method is to minimize the smallest invariant and attractive set of a linear control system operating under the influence of bounded external disturbances. This study extends the application of this method to address the leader-following consensus problem. Initially, a linear control protocol is designed for the multi-agent system in the absence of disturbances. Subsequently, in the presence of bounded disturbances, by employing a similar linear control protocol, a necessary and sufficient condition is introduced to derive the optimal control parameters for the multi-agent system such that the state of followers converges to and remains in a minimal invariant ellipsoid around the state of the leader.

线性 "领导者-跟随者 "共识协议中对有界扰动的最优拒绝:不变椭圆体法
不变椭球法的目标是最小化在有界外部干扰影响下运行的线性控制系统的最小不变集和吸引力集。本研究将这一方法的应用扩展到解决领导者-跟随者共识问题。首先,在没有干扰的情况下,为多代理系统设计线性控制协议。随后,在存在有界干扰的情况下,通过采用类似的线性控制协议,引入必要条件和充分条件,得出多代理系统的最优控制参数,从而使跟随者的状态收敛到并保持在领导者状态周围的最小不变椭圆内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信