{"title":"TrafficTrack: rethinking the motion and appearance cue for multi-vehicle tracking in traffic monitoring","authors":"Hui Cai, Haifeng Lin, Dapeng Liu","doi":"10.1007/s00530-024-01407-8","DOIUrl":null,"url":null,"abstract":"<p>Analyzing traffic flow based on data from traffic monitoring is an essential component of intelligent transportation systems. In most traffic scenarios, vehicles are the primary targets, so multi-object tracking of vehicles in traffic monitoring is a critical subject. In view of the current difficulties, such as complex road conditions, numerous obstructions, and similar vehicle appearances, we propose a detection-based multi-object vehicle tracking algorithm that combines motion and appearance cues. Firstly, to improve the motion prediction accuracy, we propose a Kalman filter that adaptively updates the noise according to the motion matching cost and detection confidence score, combined with exponential transformation and residuals. Then, we propose a combined distance to utilize motion and appearance cues. Finally, we present a trajectory recovery strategy to handle unmatched trajectories and detections. Experimental results on the UA-DETRAC dataset demonstrate that this method achieves excellent tracking performance for vehicle tracking tasks in traffic monitoring perspectives, meeting the practical application demands of complex traffic scenarios.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"2 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01407-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing traffic flow based on data from traffic monitoring is an essential component of intelligent transportation systems. In most traffic scenarios, vehicles are the primary targets, so multi-object tracking of vehicles in traffic monitoring is a critical subject. In view of the current difficulties, such as complex road conditions, numerous obstructions, and similar vehicle appearances, we propose a detection-based multi-object vehicle tracking algorithm that combines motion and appearance cues. Firstly, to improve the motion prediction accuracy, we propose a Kalman filter that adaptively updates the noise according to the motion matching cost and detection confidence score, combined with exponential transformation and residuals. Then, we propose a combined distance to utilize motion and appearance cues. Finally, we present a trajectory recovery strategy to handle unmatched trajectories and detections. Experimental results on the UA-DETRAC dataset demonstrate that this method achieves excellent tracking performance for vehicle tracking tasks in traffic monitoring perspectives, meeting the practical application demands of complex traffic scenarios.
期刊介绍:
This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.