{"title":"Energy recovery and ride comfort analysis of mechanical-electrical-hydraulic regenerative suspension system for tracked vehicle","authors":"Weijie Zhang, Yong Guo, Guosheng Wang, Qihui Ling, Zhewu Chen","doi":"10.1177/09544070241265034","DOIUrl":null,"url":null,"abstract":"A novel mechanical-electrical-hydraulic regenerative suspension system (MEH-RSS) suitable for tracked vehicles is proposed to improve the ride comfort of tracked vehicles while efficiently recovering the suspension vibration energy and improving the suspension working reliability. The dynamical model considering the dynamic damping coefficient of the MEH-RSS is established and the ride comfort analysis of tracked vehicle is carried out to verify the vibration reduction performance of the MEH-RSS. A simulated test of the energy recovery module is designed based on the bidirectional energy management control strategy, and the results show that the MEH-RSS can achieve semi-active damping force adjustment function and efficient energy recovery. The simulation results of a single bogie wheel 2-DOF model show that the damping coefficient of the MEH-RSS can adapt to the changes in road excitation characteristics, and semi-active control function can be achieved by adjusting the external resistance. The average energy recovery power of 4442 W can be reached on E-class off-road with a driving velocity of 10 m/s. The half vehicle 8-DOF model simulation results show that under passive working conditions, the root-mean-square (RMS) value of the vertical acceleration of a tracked vehicle equipped with MEH-RSS is reduced by 5.7% relative to that of a tracked vehicle equipped with traditional passive suspension (TPS) on E-class off-road. The MEH-RSS can effectively improve the ride comfort of tracked vehicles while achieving vibration energy recovery.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel mechanical-electrical-hydraulic regenerative suspension system (MEH-RSS) suitable for tracked vehicles is proposed to improve the ride comfort of tracked vehicles while efficiently recovering the suspension vibration energy and improving the suspension working reliability. The dynamical model considering the dynamic damping coefficient of the MEH-RSS is established and the ride comfort analysis of tracked vehicle is carried out to verify the vibration reduction performance of the MEH-RSS. A simulated test of the energy recovery module is designed based on the bidirectional energy management control strategy, and the results show that the MEH-RSS can achieve semi-active damping force adjustment function and efficient energy recovery. The simulation results of a single bogie wheel 2-DOF model show that the damping coefficient of the MEH-RSS can adapt to the changes in road excitation characteristics, and semi-active control function can be achieved by adjusting the external resistance. The average energy recovery power of 4442 W can be reached on E-class off-road with a driving velocity of 10 m/s. The half vehicle 8-DOF model simulation results show that under passive working conditions, the root-mean-square (RMS) value of the vertical acceleration of a tracked vehicle equipped with MEH-RSS is reduced by 5.7% relative to that of a tracked vehicle equipped with traditional passive suspension (TPS) on E-class off-road. The MEH-RSS can effectively improve the ride comfort of tracked vehicles while achieving vibration energy recovery.
期刊介绍:
The Journal of Automobile Engineering is an established, high quality multi-disciplinary journal which publishes the very best peer-reviewed science and engineering in the field.