{"title":"Towards a new standard for seismic moment tensor inversion containing 3D Earth structure uncertainty","authors":"T-S Phạm, H Tkalčić, J Hu, S Kim","doi":"10.1093/gji/ggae256","DOIUrl":null,"url":null,"abstract":"Summary Moment tensor (MT) inversion is a classical geophysical inverse problem that infers a force-equivalent model of a seismic source from seismological observations. Like other inverse problems, the accuracy of the inversion depends on the reliability of the forward problem simulating waveforms from the source location through an Earth structural model. Apart from errors in data, the error in forward waveform simulation, also known as theory error, is a significant source of error contributing to the misfit function between the predicted and observed waveforms. Here, we set up numerical experiments to comprehensively probe the sensitivity of the linearized MT inversion to 3D regional Earth model errors, a known predominant factor of the theory error. Using the Monte Carlo method, we estimate the empirical structural covariance matrices to characterize the waveform mismatch due to the imperfect knowledge of Earth's structure. Firstly, although the inversion accuracy deteriorates with increasing model errors, incorporating the structural covariance matrices into the misfit function improves the accuracy of inversion results for all theorized error distributions. Secondly, we propose a slightly modified form of the structural covariance matrix, which further enhances the inversion outcome. Lastly, as the true structural errors are likely spatially correlated, we highlight the importance of adequately treating the correlation into the MT inversion because of its significant impact on inversion. Overall, as a preliminary effort in quantifying 3D structural errors on MT inversion, this study proves the computational feasibility by means of numerical experiments and will hopefully provide a way forward for future work on this topic.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae256","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Moment tensor (MT) inversion is a classical geophysical inverse problem that infers a force-equivalent model of a seismic source from seismological observations. Like other inverse problems, the accuracy of the inversion depends on the reliability of the forward problem simulating waveforms from the source location through an Earth structural model. Apart from errors in data, the error in forward waveform simulation, also known as theory error, is a significant source of error contributing to the misfit function between the predicted and observed waveforms. Here, we set up numerical experiments to comprehensively probe the sensitivity of the linearized MT inversion to 3D regional Earth model errors, a known predominant factor of the theory error. Using the Monte Carlo method, we estimate the empirical structural covariance matrices to characterize the waveform mismatch due to the imperfect knowledge of Earth's structure. Firstly, although the inversion accuracy deteriorates with increasing model errors, incorporating the structural covariance matrices into the misfit function improves the accuracy of inversion results for all theorized error distributions. Secondly, we propose a slightly modified form of the structural covariance matrix, which further enhances the inversion outcome. Lastly, as the true structural errors are likely spatially correlated, we highlight the importance of adequately treating the correlation into the MT inversion because of its significant impact on inversion. Overall, as a preliminary effort in quantifying 3D structural errors on MT inversion, this study proves the computational feasibility by means of numerical experiments and will hopefully provide a way forward for future work on this topic.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.