Note on C*-algebras associated to boundary actions of hyperbolic 3-manifold groups

Shirly Geffen, Julian Kranz
{"title":"Note on C*-algebras associated to boundary actions of hyperbolic 3-manifold groups","authors":"Shirly Geffen, Julian Kranz","doi":"arxiv-2407.15215","DOIUrl":null,"url":null,"abstract":"Using Kirchberg-Phillips' classification of purely infinite C*-algebras by\nK-theory, we prove that the isomorphism types of crossed product C*-algebras\nassociated to certain hyperbolic 3-manifold groups acting on their Gromov\nboundary only depend on the manifold's homology. As a result, we obtain\ninfinitely many pairwise non-isomorphic hyperbolic groups all of whose\nassociated crossed products are isomorphic. These isomomorphisms are not of\ndynamical nature in the sense that they are not induced by isomorphisms of the\nunderlying groupoids.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using Kirchberg-Phillips' classification of purely infinite C*-algebras by K-theory, we prove that the isomorphism types of crossed product C*-algebras associated to certain hyperbolic 3-manifold groups acting on their Gromov boundary only depend on the manifold's homology. As a result, we obtain infinitely many pairwise non-isomorphic hyperbolic groups all of whose associated crossed products are isomorphic. These isomomorphisms are not of dynamical nature in the sense that they are not induced by isomorphisms of the underlying groupoids.
与双曲3-manifold群的边界作用相关的C*数组注释
利用 Kirchberg-Phillips 用 K 理论对纯无限 C* 对象的分类,我们证明了与作用于其 Gromov 边界的某些双曲 3-流形群相关的交叉积 C* 对象的同构类型只取决于流形的同源性。因此,我们得到了无限多的成对非同构双曲群,它们的相关交叉积都是同构的。这些同构不是动力性质的,因为它们不是由底层群的同构诱导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信