Wiener pairs of Banach algebras of operator-valued matrices

Lukas Köhldorfer, Peter Balazs
{"title":"Wiener pairs of Banach algebras of operator-valued matrices","authors":"Lukas Köhldorfer, Peter Balazs","doi":"arxiv-2407.16416","DOIUrl":null,"url":null,"abstract":"In this article we introduce several new examples of Wiener pairs\n$\\mathcal{A} \\subseteq \\mathcal{B}$, where $\\mathcal{B} =\n\\mathcal{B}(\\ell^2(X;\\mathcal{H}))$ is the Banach algebra of bounded operators\nacting on the Hilbert space-valued Bochner sequence space\n$\\ell^2(X;\\mathcal{H})$ and $\\mathcal{A} = \\mathcal{A}(X)$ is a Banach algebra\nconsisting of operator-valued matrices indexed by some relatively separated set\n$X \\subset \\mathbb{R}^d$. In particular, we introduce\n$\\mathcal{B}(\\mathcal{H})$-valued versions of the Jaffard algebra, of certain\nweighted Schur-type algebras, of Banach algebras which are defined by more\ngeneral off-diagonal decay conditions than polynomial decay, of weighted\nversions of the Baskakov-Gohberg-Sj\\\"ostrand algebra, and of anisotropic\nvariations of all of these matrix algebras, and show that they are\ninverse-closed in $\\mathcal{B}(\\ell^2(X;\\mathcal{H}))$. In addition, we obtain\nthat each of these Banach algebras is symmetric.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we introduce several new examples of Wiener pairs $\mathcal{A} \subseteq \mathcal{B}$, where $\mathcal{B} = \mathcal{B}(\ell^2(X;\mathcal{H}))$ is the Banach algebra of bounded operators acting on the Hilbert space-valued Bochner sequence space $\ell^2(X;\mathcal{H})$ and $\mathcal{A} = \mathcal{A}(X)$ is a Banach algebra consisting of operator-valued matrices indexed by some relatively separated set $X \subset \mathbb{R}^d$. In particular, we introduce $\mathcal{B}(\mathcal{H})$-valued versions of the Jaffard algebra, of certain weighted Schur-type algebras, of Banach algebras which are defined by more general off-diagonal decay conditions than polynomial decay, of weighted versions of the Baskakov-Gohberg-Sj\"ostrand algebra, and of anisotropic variations of all of these matrix algebras, and show that they are inverse-closed in $\mathcal{B}(\ell^2(X;\mathcal{H}))$. In addition, we obtain that each of these Banach algebras is symmetric.
算子值矩阵的巴拿赫代数的维纳对
在这篇文章中,我们介绍了维纳对的几个新例子$\mathcal{A}\subseteq \mathcal{B}$。\其中 $\mathcal{B} =\mathcal{B}(\ell^2(X;\mathcal{H}))$ 是作用于希尔伯特空间值的 Bochner 序列空间 $\ell^2(X.) 的有界算子的巴纳赫代数;(\mathcal{H})$和 $\mathcal{A} = \mathcal{A}(X)$是由某个相对分离的集合$X \subset \mathbb{R}^d$索引的算子值矩阵组成的巴拿赫代数。特别是,我们引入了$\mathcal{B}(\mathcal{H})$值版本的贾法尔代数、某些加权舒尔型代数、巴拿赫代数,它们是由比多项式衰减更一般的非对角线衰减条件定义的、Baskakov-Gohberg-Sj\"ostrand 代数的加权版本,以及所有这些矩阵代数的各向异性变化,并证明它们在 $\mathcal{B}(\ell^2(X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X., X;\(X;ell^2))$中反封闭。此外,我们还得到这些巴拿赫数组中的每一个都是对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信