Biju Theruvil Sayed, Arif Sari, Wade Ghribi, Ahmed AH Alkurdi, Shavan Askar, Karrar Hatif Mohmmed
{"title":"Finite element method-enabled machine learning for analysing residual stress and plastic deformation in surface mechanical attrition-treated alloys","authors":"Biju Theruvil Sayed, Arif Sari, Wade Ghribi, Ahmed AH Alkurdi, Shavan Askar, Karrar Hatif Mohmmed","doi":"10.1177/09544089241263455","DOIUrl":null,"url":null,"abstract":"This paper presents a novel machine learning model designed to predict residual stress and equivalent plastic deformation in metallic alloys undergoing surface mechanical attrition treatment. The dataset used for training was generated by numerically simulating surface mechanical attrition treatment on various alloys, such as SS316L, NiTi, Ti64, Al7075, and AZ31. The regression analysis of the proposed model exhibits exceptional predictive capabilities, with high R² values of 0.959 for residual stress and 0.911 for average equivalent plastic strain, alongside low root mean square error values of 0.035 and 0.088, respectively. Furthermore, the detailed examination of the correlation between input features and output targets revealed that the increase in values of residual stress and plastic strain in treated samples corresponded with heightened weight functions of processing parameters and material properties, respectively, within the machine learning model. A case study focusing on Al7075 was also provided, demonstrating the model's ability to adjust parameters effectively to achieve specific surface residual stress and plastic strain outcomes. Ultimately, the proposed model not only serves as a reliable predictor for the output targets but also functions as a valuable tool for characterizing the complex input–output relationships, thereby reducing the need for trial and error experimentation in real-world scenarios.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241263455","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel machine learning model designed to predict residual stress and equivalent plastic deformation in metallic alloys undergoing surface mechanical attrition treatment. The dataset used for training was generated by numerically simulating surface mechanical attrition treatment on various alloys, such as SS316L, NiTi, Ti64, Al7075, and AZ31. The regression analysis of the proposed model exhibits exceptional predictive capabilities, with high R² values of 0.959 for residual stress and 0.911 for average equivalent plastic strain, alongside low root mean square error values of 0.035 and 0.088, respectively. Furthermore, the detailed examination of the correlation between input features and output targets revealed that the increase in values of residual stress and plastic strain in treated samples corresponded with heightened weight functions of processing parameters and material properties, respectively, within the machine learning model. A case study focusing on Al7075 was also provided, demonstrating the model's ability to adjust parameters effectively to achieve specific surface residual stress and plastic strain outcomes. Ultimately, the proposed model not only serves as a reliable predictor for the output targets but also functions as a valuable tool for characterizing the complex input–output relationships, thereby reducing the need for trial and error experimentation in real-world scenarios.
期刊介绍:
The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.