Haresh Bhaskar, Zoe Gidden, Gurvir Virdi, Dirk-Jan Kleinjan, Susan J. Rosser, Sonia Gandhi, Lynne Regan, Mathew H. Horrocks
{"title":"Super-resolution imaging of proteins inside live mammalian cells with mLIVE-PAINT","authors":"Haresh Bhaskar, Zoe Gidden, Gurvir Virdi, Dirk-Jan Kleinjan, Susan J. Rosser, Sonia Gandhi, Lynne Regan, Mathew H. Horrocks","doi":"10.1101/2024.07.22.604574","DOIUrl":null,"url":null,"abstract":"Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells. Using the 101A/101B coiled-coil peptide pair as a peptide-based targeting system, we successfully demonstrate the super-resolution imaging of two distinct proteins in mammalian cells, one localized in the nucleus, and the second in the cytoplasm. This study highlights the versatility of LIVE-PAINT, suggesting its potential for live-cell super-resolution imaging across a range of protein targets in mammalian cells. We name the mammalian cell version of our original method mLIVE-PAINT.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.22.604574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells. Using the 101A/101B coiled-coil peptide pair as a peptide-based targeting system, we successfully demonstrate the super-resolution imaging of two distinct proteins in mammalian cells, one localized in the nucleus, and the second in the cytoplasm. This study highlights the versatility of LIVE-PAINT, suggesting its potential for live-cell super-resolution imaging across a range of protein targets in mammalian cells. We name the mammalian cell version of our original method mLIVE-PAINT.