An excellent combination of strength and ductility via hierarchical precipitation structures in Co-free medium-entropy alloys

Jiaxin Zhang, Shengguo Ma, Xiaoxiao Liu, Junwei Qiao, Jianjun Wang, Dan Zhao, Zhiming Jiao, Tuanwei Zhang, Bin Xu, Zhihua Wang
{"title":"An excellent combination of strength and ductility via hierarchical precipitation structures in Co-free medium-entropy alloys","authors":"Jiaxin Zhang, Shengguo Ma, Xiaoxiao Liu, Junwei Qiao, Jianjun Wang, Dan Zhao, Zhiming Jiao, Tuanwei Zhang, Bin Xu, Zhihua Wang","doi":"10.1016/j.jmrt.2024.07.104","DOIUrl":null,"url":null,"abstract":"A Co-free non-equiatomic NiCrFeAlTi medium-entropy alloy (MEA) with an excellent strength-ductility synergy was fabricated, which shows a multiphase structure composed of face-centered cubic (FCC), L1 (ordered FCC), and Cr-rich body-centered cubic (BCC) phase by thermomechanical processing. Specifically, the aged sample displays the outstanding yield tensile strength (YTS, ∼1188 MPa), ultimate tensile strength (UTS, ∼1560 MPa) and work-hardening rate (WHR, ∼4.5 GPa) values as well as an acceptable plasticity of ∼16.6%. Theoretical calculations suggest that precipitation strengthening significantly contributes to achieving the fascinating tensile strength among various strengthening contributors. Further analyses reveal that multiple nanoscale stacking-fault (SF) networks are activated during plastic deformation in the aged alloy. Accordingly, the dual effects consisting of the hierarchical precipitation structure and SF networks lead to the combination of excellent tensile strength and strain-hardening capacity.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Co-free non-equiatomic NiCrFeAlTi medium-entropy alloy (MEA) with an excellent strength-ductility synergy was fabricated, which shows a multiphase structure composed of face-centered cubic (FCC), L1 (ordered FCC), and Cr-rich body-centered cubic (BCC) phase by thermomechanical processing. Specifically, the aged sample displays the outstanding yield tensile strength (YTS, ∼1188 MPa), ultimate tensile strength (UTS, ∼1560 MPa) and work-hardening rate (WHR, ∼4.5 GPa) values as well as an acceptable plasticity of ∼16.6%. Theoretical calculations suggest that precipitation strengthening significantly contributes to achieving the fascinating tensile strength among various strengthening contributors. Further analyses reveal that multiple nanoscale stacking-fault (SF) networks are activated during plastic deformation in the aged alloy. Accordingly, the dual effects consisting of the hierarchical precipitation structure and SF networks lead to the combination of excellent tensile strength and strain-hardening capacity.
通过无钴中等熵合金中的分层沉淀结构实现强度和延展性的完美结合
通过热机械加工,制备了一种无钴非等原子镍铬铁铝钛中熵合金(MEA),该合金具有优异的强度-电导率协同效应,呈现出由面心立方(FCC)、L1(有序 FCC)和富铬体心立方(BCC)相组成的多相结构。具体而言,老化样品显示出优异的屈服拉伸强度(YTS,∼1188 兆帕)、极限拉伸强度(UTS,∼1560 兆帕)和加工硬化率(WHR,∼4.5 GPa)值,以及可接受的塑性(∼16.6%)。理论计算表明,在各种强化因素中,沉淀强化对达到令人着迷的抗拉强度有显著贡献。进一步的分析表明,在老化合金的塑性变形过程中,多个纳米级堆叠断层(SF)网络被激活。因此,由分层沉淀结构和 SF 网络组成的双重效应导致了优异的抗拉强度和应变硬化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信