{"title":"On the Formation of Microstructure for Singularly Perturbed Problems with Two, Three, or Four Preferred Gradients","authors":"Janusz Ginster","doi":"10.1007/s00332-024-10067-x","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, singularly perturbed energies with 2, 3, or 4 preferred gradients subject to incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic microstructures in shape memory alloys (<span>\\(N=2\\)</span>), a continuum approximation for the <span>\\(J_1-J_3\\)</span>-model for discrete spin systems (<span>\\(N=4\\)</span>), and models for crystalline surfaces with <i>N</i> different facets (general <i>N</i>). On a unit square, scaling laws are proved with respect to two parameters, one measuring the transition cost between different preferred gradients and the other measuring the incompatibility of the set of preferred gradients and the boundary conditions. By a change of coordinates, the latter can also be understood as an incompatibility of a variable domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general Lipschitz domains.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"23 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10067-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, singularly perturbed energies with 2, 3, or 4 preferred gradients subject to incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic microstructures in shape memory alloys (\(N=2\)), a continuum approximation for the \(J_1-J_3\)-model for discrete spin systems (\(N=4\)), and models for crystalline surfaces with N different facets (general N). On a unit square, scaling laws are proved with respect to two parameters, one measuring the transition cost between different preferred gradients and the other measuring the incompatibility of the set of preferred gradients and the boundary conditions. By a change of coordinates, the latter can also be understood as an incompatibility of a variable domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general Lipschitz domains.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.