Cation disorder in MgSnN2 and its effects on the electronic properties

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing Huang, Jun Kang
{"title":"Cation disorder in MgSnN2 and its effects on the electronic properties","authors":"Jing Huang, Jun Kang","doi":"10.1103/physrevmaterials.8.074604","DOIUrl":null,"url":null,"abstract":"Ternary nitride <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MgSnN</mi><mn>2</mn></msub></math> is a promising candidate to fill the “green gap” of nitride-based light-emitting diodes. The coexistence of two different valence cations offers a unique tunability on its electronic properties through controlling the degree of cation site ordering without a concomitant change in stoichiometry. In this work, the structural and electronic properties of cation-disordered <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MgSnN</mi><mn>2</mn></msub></math> are studied through a combination of density functional theory calculations, cluster expansion, and Monte Carlo simulations. The order-disorder phase transition is analyzed, and the short-range and long-range order parameters quantifying the degree of disorder are calculated. A strong correlation between the two parameters is observed, indicating the absence of the octet-rule-conserving disorder. Cation disorder has two main effects on the electronic properties of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MgSnN</mi><mn>2</mn></msub></math>. One is the reduction of the band gap, and the other is the strong localization of valence band edge states. Further analysis showed that the localization is a consequence of the weak interatomic coupling between the N atoms and the disorder-induced fluctuation of the local electrostatic potentials on the N atoms. These results could be helpful for the understanding of disorder effects in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MgSnN</mi><mn>2</mn></msub></math>, as well as the tuning of its properties through the control of cation ordering.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"55 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.074604","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary nitride MgSnN2 is a promising candidate to fill the “green gap” of nitride-based light-emitting diodes. The coexistence of two different valence cations offers a unique tunability on its electronic properties through controlling the degree of cation site ordering without a concomitant change in stoichiometry. In this work, the structural and electronic properties of cation-disordered MgSnN2 are studied through a combination of density functional theory calculations, cluster expansion, and Monte Carlo simulations. The order-disorder phase transition is analyzed, and the short-range and long-range order parameters quantifying the degree of disorder are calculated. A strong correlation between the two parameters is observed, indicating the absence of the octet-rule-conserving disorder. Cation disorder has two main effects on the electronic properties of MgSnN2. One is the reduction of the band gap, and the other is the strong localization of valence band edge states. Further analysis showed that the localization is a consequence of the weak interatomic coupling between the N atoms and the disorder-induced fluctuation of the local electrostatic potentials on the N atoms. These results could be helpful for the understanding of disorder effects in MgSnN2, as well as the tuning of its properties through the control of cation ordering.

Abstract Image

MgSnN2 中的阳离子无序及其对电子特性的影响
三元氮化物 MgSnN2 有望填补氮化物发光二极管的 "绿色空白"。两种不同价位的阳离子共存,通过控制阳离子位点有序化程度,为其电子特性提供了独特的可调谐性,而无需同时改变化学计量学。在这项研究中,我们结合密度泛函理论计算、簇扩展和蒙特卡罗模拟,研究了阳离子失序 MgSnN2 的结构和电子特性。分析了有序-无序相变,并计算了量化无序程度的短程和长程有序参数。观察到这两个参数之间存在很强的相关性,表明不存在八分位守恒无序。阳离子无序对 MgSnN2 的电子特性有两个主要影响。一个是带隙的减小,另一个是价带边缘态的强烈局域化。进一步的分析表明,这种局域化是 N 原子间微弱的原子间耦合和无序引起的 N 原子局部静电势波动的结果。这些结果有助于理解 MgSnN2 中的无序效应,以及通过控制阳离子有序来调整其性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信