Study on the effect of bearing position and stiffness on the dynamic behavior of output stage of CHT system based on the cylindrical gear meshing

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Xiaoyu Che, Rupeng Zhu
{"title":"Study on the effect of bearing position and stiffness on the dynamic behavior of output stage of CHT system based on the cylindrical gear meshing","authors":"Xiaoyu Che, Rupeng Zhu","doi":"10.1177/09544062241259609","DOIUrl":null,"url":null,"abstract":"The internal and external rotor shafts are important components to transfer power in coaxial helicopters, and bearing supports could affect the dynamic behavior of the transmission system. In order to explore the influence of bearing support structure, bearing position and support stiffness on the dynamic behavior of the output stage of coaxial helicopter transmission (CHT) system based on the cylindrical gear meshing, a rigid-flexible coupled dynamic model is established under cantilever-cantilever support structure and cantilever-simple support structure considering the flexibility of rotor shaft based on Timoshenko beam theory, and time-varying mesh stiffness (TVMS), comprehensive meshing error are also considered. Newmark-beta numerical method was applied to calculate the dynamic response. The result indicates that the load sharing performance of gear pair using cantilever-simple support structure is better than that of cantilever-cantilever structure, but the maximum vibration displacement of bull gears is reduced apparently. Simultaneously, the bearing positions and stiffness can be adjusted to achieve better performance in load distribution and maximum vibration displacement of bull gears.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241259609","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The internal and external rotor shafts are important components to transfer power in coaxial helicopters, and bearing supports could affect the dynamic behavior of the transmission system. In order to explore the influence of bearing support structure, bearing position and support stiffness on the dynamic behavior of the output stage of coaxial helicopter transmission (CHT) system based on the cylindrical gear meshing, a rigid-flexible coupled dynamic model is established under cantilever-cantilever support structure and cantilever-simple support structure considering the flexibility of rotor shaft based on Timoshenko beam theory, and time-varying mesh stiffness (TVMS), comprehensive meshing error are also considered. Newmark-beta numerical method was applied to calculate the dynamic response. The result indicates that the load sharing performance of gear pair using cantilever-simple support structure is better than that of cantilever-cantilever structure, but the maximum vibration displacement of bull gears is reduced apparently. Simultaneously, the bearing positions and stiffness can be adjusted to achieve better performance in load distribution and maximum vibration displacement of bull gears.
研究轴承位置和刚度对基于圆柱齿轮啮合的 CHT 系统输出级动态行为的影响
内外转子轴是同轴直升机动力传输的重要部件,轴承支撑会影响传动系统的动态特性。为了探讨轴承支撑结构、轴承位置和支撑刚度对基于圆柱齿轮啮合的同轴直升机传动(CHT)系统输出级动态行为的影响,基于季莫申科梁理论建立了考虑转子轴柔性的悬臂-悬臂支撑结构和悬臂-简支撑结构下的刚柔耦合动态模型,并考虑了时变啮合刚度(TVMS)和综合啮合误差。采用 Newmark-beta 数值方法计算动态响应。结果表明,采用悬臂-简支结构的齿轮副的负载分担性能优于悬臂-悬臂结构,但牛齿轮的最大振动位移明显减小。同时,可通过调整支承位置和刚度来实现更好的负载分配性能和公牛齿轮的最大振动位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信