KJ Anand, Thippeswamy Ekbote, Saleemsab Doddamani, E Ashoka
{"title":"Effect of clamshell powder on the mechanical and damping properties of epoxy-bamboo composites","authors":"KJ Anand, Thippeswamy Ekbote, Saleemsab Doddamani, E Ashoka","doi":"10.1177/09544062241257826","DOIUrl":null,"url":null,"abstract":"Compared to single natural fibre composites, hybridising natural fibres with filler particles presents a promising avenue for enhancing composites physical, mechanical, and damping properties. This study delves into incorporating clamshell powder, a filler derived from clams’ hard protective outer shells, into polymer composites. The focus is on investigating the potential of clamshell powder as a filler material to augment the mechanical and damping properties of epoxy-bamboo mat composites. The weight ratio of clamshell fillers varied from 0% to 9%, and the compression moulding method was used to fabricate the composites. As per ASTM standards, mechanical properties were evaluated by conducting tensile and flexural tests. Free vibration tests by impact hammer technique were employed to evaluate the natural frequency, damping ratio, and mode shapes of developed composites to measure damping properties. Results revealed that adding clamshell filler significantly improved composites tensile strength, flexural strength, and damping properties. The addition of clamshell elevated the tensile strength by 18.5%, and flexural strength by 24.2% for composite with 6 wt% filler, which can be attributed to the efficiency of load transfer and the interfacial bonding between fillers and epoxy matrix. SEM analysis supported the experimental results obtained. The highest damping value is received for 9 wt% filler, showing 30% enhancement compared to composites without clamshell filler. Modal analyses using ANSYS software further validated the positive impact of clamshell filler. This study underscores the potential of clamshell filler in enhancing the mechanical and damping properties of epoxy-bamboo composites, broadening their applicability in various fields.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241257826","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to single natural fibre composites, hybridising natural fibres with filler particles presents a promising avenue for enhancing composites physical, mechanical, and damping properties. This study delves into incorporating clamshell powder, a filler derived from clams’ hard protective outer shells, into polymer composites. The focus is on investigating the potential of clamshell powder as a filler material to augment the mechanical and damping properties of epoxy-bamboo mat composites. The weight ratio of clamshell fillers varied from 0% to 9%, and the compression moulding method was used to fabricate the composites. As per ASTM standards, mechanical properties were evaluated by conducting tensile and flexural tests. Free vibration tests by impact hammer technique were employed to evaluate the natural frequency, damping ratio, and mode shapes of developed composites to measure damping properties. Results revealed that adding clamshell filler significantly improved composites tensile strength, flexural strength, and damping properties. The addition of clamshell elevated the tensile strength by 18.5%, and flexural strength by 24.2% for composite with 6 wt% filler, which can be attributed to the efficiency of load transfer and the interfacial bonding between fillers and epoxy matrix. SEM analysis supported the experimental results obtained. The highest damping value is received for 9 wt% filler, showing 30% enhancement compared to composites without clamshell filler. Modal analyses using ANSYS software further validated the positive impact of clamshell filler. This study underscores the potential of clamshell filler in enhancing the mechanical and damping properties of epoxy-bamboo composites, broadening their applicability in various fields.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.