Suzanne Saffie-Siebert, Nissim Torabi-Pour, Andrew Gibson, Flavia Maria Sutera, Ashkan Dehsorkhi, Paulina Baran-Rachwalska, Skye Quinn
{"title":"Toward a large-batch manufacturing process for silicon-stabilized lipid nanoparticles: A highly customizable RNA delivery platform","authors":"Suzanne Saffie-Siebert, Nissim Torabi-Pour, Andrew Gibson, Flavia Maria Sutera, Ashkan Dehsorkhi, Paulina Baran-Rachwalska, Skye Quinn","doi":"10.1016/j.omtm.2024.101299","DOIUrl":null,"url":null,"abstract":"While lipid nanoparticles (LNPs) are a key enabling technology for RNA-based therapeutics, some outstanding challenges hinder their wider clinical translation and use, particularly in terms of RNA stability and limited shelf life. In response to these limitations, we developed silicon-stabilized hybrid lipid nanoparticles (sshLNPs) as a next-generation nanocarrier with improved physical and temperature stability, as well as the highly advantageous capacity for “post-hoc loading” of RNA. Nevertheless, previously reported sshLNP formulations were produced using lipid thin film hydration, making scale-up impractical. To realize the potential of this emerging delivery platform, a manufacturing process enabling multikilogram batch sizes was required for successful clinical translation and deployment at scale. This was achieved by developing a revised protocol based on solvent injection mixing and incorporating other process adjustments to enable in-flow extrusion of multiliter volumes, while ensuring sshLNPs with the desired characteristics. Optimized procedures for nanoparticle formation, extrusion, and tangential flow filtration (to remove residual organic solvent) currently enable production of 2 kg finished batches. Importantly, sshLNPs produced via the modified large-scale workflow show equivalent physical and functional properties to those derived from the earlier small-scale methods, paving the way for GMP manufacturing protocols to enable vital translational clinical studies.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101299","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
While lipid nanoparticles (LNPs) are a key enabling technology for RNA-based therapeutics, some outstanding challenges hinder their wider clinical translation and use, particularly in terms of RNA stability and limited shelf life. In response to these limitations, we developed silicon-stabilized hybrid lipid nanoparticles (sshLNPs) as a next-generation nanocarrier with improved physical and temperature stability, as well as the highly advantageous capacity for “post-hoc loading” of RNA. Nevertheless, previously reported sshLNP formulations were produced using lipid thin film hydration, making scale-up impractical. To realize the potential of this emerging delivery platform, a manufacturing process enabling multikilogram batch sizes was required for successful clinical translation and deployment at scale. This was achieved by developing a revised protocol based on solvent injection mixing and incorporating other process adjustments to enable in-flow extrusion of multiliter volumes, while ensuring sshLNPs with the desired characteristics. Optimized procedures for nanoparticle formation, extrusion, and tangential flow filtration (to remove residual organic solvent) currently enable production of 2 kg finished batches. Importantly, sshLNPs produced via the modified large-scale workflow show equivalent physical and functional properties to those derived from the earlier small-scale methods, paving the way for GMP manufacturing protocols to enable vital translational clinical studies.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.