{"title":"DNA-PK inhibition enhances gene editing efficiency in HSPCs for CRISPR-based treatment of X-linked hyper IgM syndrome","authors":"","doi":"10.1016/j.omtm.2024.101297","DOIUrl":null,"url":null,"abstract":"<p>Targeted gene editing to restore CD40L expression via homology-directed repair (HDR) in CD34<sup>+</sup> hematopoietic stem and progenitor cells (HSPCs) represents a potential long-term therapy for X-linked hyper IgM syndrome. However, clinical translation of HSPC editing is limited by inefficient long-term engraftment of HDR-edited HSPCs. Here, we ameliorate this issue by employing a small-molecule inhibitor of DNA-PKcs, AZD7648, to bias DNA repair mechanisms to facilitate HDR upon CRISPR SpCas9-based gene editing. Using AZD7648 treatment and a clinically relevant HSPC source, mobilized peripheral blood CD34<sup>+</sup> cells, we achieve ∼60% HDR efficiency at the <em>CD40LG</em> locus and enhanced engraftment of HDR-edited HSPCs in primary and secondary xenotransplants. Specifically, we observed a 1.6-fold increase of HDR-edited long-term HSPCs in primary transplant recipients without disturbing chimerism levels or differentiation capacity. As CD40L is primarily expressed in T cells, we demonstrate T cell differentiation from HDR-edited HSPCs <em>in vivo</em> and in artificial thymic organoid cultures, and endogenously regulated CD40L expression following activation of <em>in-vivo</em>-derived CD4<sup>+</sup> T cells. Our combined findings demonstrate HDR editing at the <em>CD40LG</em> locus at potentially clinically beneficial levels. More broadly, these data support using DNA-PKcs inhibition with AZD7648 as a simple and efficacious addition to HSPC editing platforms.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101297","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted gene editing to restore CD40L expression via homology-directed repair (HDR) in CD34+ hematopoietic stem and progenitor cells (HSPCs) represents a potential long-term therapy for X-linked hyper IgM syndrome. However, clinical translation of HSPC editing is limited by inefficient long-term engraftment of HDR-edited HSPCs. Here, we ameliorate this issue by employing a small-molecule inhibitor of DNA-PKcs, AZD7648, to bias DNA repair mechanisms to facilitate HDR upon CRISPR SpCas9-based gene editing. Using AZD7648 treatment and a clinically relevant HSPC source, mobilized peripheral blood CD34+ cells, we achieve ∼60% HDR efficiency at the CD40LG locus and enhanced engraftment of HDR-edited HSPCs in primary and secondary xenotransplants. Specifically, we observed a 1.6-fold increase of HDR-edited long-term HSPCs in primary transplant recipients without disturbing chimerism levels or differentiation capacity. As CD40L is primarily expressed in T cells, we demonstrate T cell differentiation from HDR-edited HSPCs in vivo and in artificial thymic organoid cultures, and endogenously regulated CD40L expression following activation of in-vivo-derived CD4+ T cells. Our combined findings demonstrate HDR editing at the CD40LG locus at potentially clinically beneficial levels. More broadly, these data support using DNA-PKcs inhibition with AZD7648 as a simple and efficacious addition to HSPC editing platforms.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.