{"title":"A novel immiscible high entropy alloy strengthened via L12-nanoprecipitate","authors":"Zheng-qin Wang, Ming-yu Fan, Yang Zhang, Jun-peng Li, Li-yuan Liu, Ji-hong Han, Xing-hao Li, Zhong-wu Zhang","doi":"10.1007/s11771-024-5683-7","DOIUrl":null,"url":null,"abstract":"<p>The low-cost Fe-Cu, Fe-Ni, and Cu-based high-entropy alloys exhibit a widespread utilization prospect. However, these potential applications have been limited by their low strength. In this study, a novel Fe<sub>31</sub>Cu<sub>31</sub>Ni<sub>28</sub>Al<sub>4</sub>Ti<sub>3</sub>Co<sub>3</sub> immiscible high-entropy alloy (HEA) was developed. After vacuum arc melting and copper mold suction casting, this HEA exhibits a unique phase separation microstructure, which consists of striped Cu-rich regions and Fe-rich region. Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region. The aging alloy is further strengthened by a L1<sub>2</sub>-Ni<sub>3</sub>(AlTi) nanoprecipitates, achieving excellent yield strength (1185 MPa) and uniform ductility (∼8.8%). The differential distribution of the L1<sub>2</sub> nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions, which increased the strain gradient and thus improved hetero-deformation induced (HDI) hardening. This work provides a new route to improve the HDI hardening of Fe-Cu alloys.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5683-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The low-cost Fe-Cu, Fe-Ni, and Cu-based high-entropy alloys exhibit a widespread utilization prospect. However, these potential applications have been limited by their low strength. In this study, a novel Fe31Cu31Ni28Al4Ti3Co3 immiscible high-entropy alloy (HEA) was developed. After vacuum arc melting and copper mold suction casting, this HEA exhibits a unique phase separation microstructure, which consists of striped Cu-rich regions and Fe-rich region. Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region. The aging alloy is further strengthened by a L12-Ni3(AlTi) nanoprecipitates, achieving excellent yield strength (1185 MPa) and uniform ductility (∼8.8%). The differential distribution of the L12 nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions, which increased the strain gradient and thus improved hetero-deformation induced (HDI) hardening. This work provides a new route to improve the HDI hardening of Fe-Cu alloys.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering