Calderón-Zygmund Decomposition, Hardy Spaces Associated with Operators and Weak Type Estimates

IF 1 3区 数学 Q1 MATHEMATICS
The Anh Bui, Xuan Thinh Duong
{"title":"Calderón-Zygmund Decomposition, Hardy Spaces Associated with Operators and Weak Type Estimates","authors":"The Anh Bui, Xuan Thinh Duong","doi":"10.1007/s11118-024-10158-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((X, d, \\mu )\\)</span> be a metric space with a metric <i>d</i> and a doubling measure <span>\\(\\mu \\)</span>. Assume that the operator <i>L</i> generates a bounded holomorphic semigroup <span>\\(e^{-tL}\\)</span> on <span>\\(L^2(X)\\)</span> whose semigroup kernel satisfies the Gaussian upper bound. Also assume that <i>L</i> has a bounded holomorphic functional calculus on <span>\\(L^2(X)\\)</span>. Then the Hardy spaces <span>\\(H^p_L(X)\\)</span> associated with the operator <i>L</i> can be defined for <span>\\(0 &lt; p \\le 1\\)</span>. In this paper, we revisit the Calderón-Zygmund decomposition and show that a function <span>\\(f \\in L^1(X)\\cap L^2(X)\\)</span> can be decomposed into a good part which is an <span>\\(L^{\\infty }\\)</span> function and a bad part which is in <span>\\(H^p_L(X)\\)</span> for some <span>\\(0&lt; p &lt;1\\)</span>. An important result of our variants of Calderón-Zygmund decompositions is that if a sub-linear operator <i>T</i> is bounded from <span>\\(L^r(X)\\)</span> to <span>\\(L^r(X)\\)</span> for some <span>\\(r &gt; 1\\)</span> and also bounded from <span>\\(H^p_L(X)\\)</span> to <span>\\(L^p(X)\\)</span> for some <span>\\(0&lt; p &lt; 1\\)</span>, then <i>T</i> is of weak type (1, 1) and bounded from <span>\\(L^q(X)\\)</span> to <span>\\(L^q(X)\\)</span> for all <span>\\(1&lt; q &lt;r\\)</span>.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10158-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((X, d, \mu )\) be a metric space with a metric d and a doubling measure \(\mu \). Assume that the operator L generates a bounded holomorphic semigroup \(e^{-tL}\) on \(L^2(X)\) whose semigroup kernel satisfies the Gaussian upper bound. Also assume that L has a bounded holomorphic functional calculus on \(L^2(X)\). Then the Hardy spaces \(H^p_L(X)\) associated with the operator L can be defined for \(0 < p \le 1\). In this paper, we revisit the Calderón-Zygmund decomposition and show that a function \(f \in L^1(X)\cap L^2(X)\) can be decomposed into a good part which is an \(L^{\infty }\) function and a bad part which is in \(H^p_L(X)\) for some \(0< p <1\). An important result of our variants of Calderón-Zygmund decompositions is that if a sub-linear operator T is bounded from \(L^r(X)\) to \(L^r(X)\) for some \(r > 1\) and also bounded from \(H^p_L(X)\) to \(L^p(X)\) for some \(0< p < 1\), then T is of weak type (1, 1) and bounded from \(L^q(X)\) to \(L^q(X)\) for all \(1< q <r\).

卡尔德龙-齐格蒙分解、与算子和弱类型估计相关的哈代空间
让\((X, d, \mu )\)是一个具有度量 d 和倍量 \(\mu \)的度量空间。假设算子 L 在 \(L^2(X)\) 上产生一个有界全形半群 \(e^{-tL}\),其半群核满足高斯上界。同时假设 L 在 \(L^2(X)\) 上有一个有界全形函数微积分。那么与算子 L 相关的哈代空间 \(H^p_L(X)\) 就可以定义为 \(0 < p \le 1\).在本文中,我们重温了卡尔德龙-齐格蒙分解,并证明了一个函数(f \in L^1(X)\cap L^2(X)\)可以分解成好的部分,即一个 \(L^{\infty }\) 函数,以及坏的部分,即在某个 \(0 < p <1\) 的 \(H^p_L(X)\) 中。我们的 Calderón-Zygmund 分解变体的一个重要结果是,如果一个子线性算子 T 对于某个 \(r >.) 从 \(L^r(X)\) 到 \(L^r(X)\) 是有界的;并且对于某个 \(r >;1),并且对于某些(0< p <1),从(H^p_L(X))到(L^p(X))也是有界的,那么T就是弱类型(1, 1),并且对于所有(1< q <r\),从(L^q(X))到(L^q(X))都是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信