Liquid drop shapes on hexagonal substrates: corner dewetting in the context of vapor–liquid–solid growth of nanowires

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brian J. Spencer
{"title":"Liquid drop shapes on hexagonal substrates: corner dewetting in the context of vapor–liquid–solid growth of nanowires","authors":"Brian J. Spencer","doi":"10.1007/s10665-024-10382-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the equilibrium shape of a liquid drop on a hexagonal substrate as motivated by vapor–liquid growth of nanowires. We numerically determine the energy-minimizing liquid drop shape on a hexagonal base using the software Surface Evolver in conjunction with an efficient regridding algorithm and convergence monitoring. The drop shape depends on two nondimensional parameters, the drop volume, and the equilibrium contact angle. We show that sufficiently large drops are well approximated away from the base by a spherical cap drop with geometric parameters determined by the area of the hexagonal base. Notably, however, the drop/base contact region does not extend to the corners of the hexagonal base, even in the limit of large volume <i>V</i>. In particular, there is a self-similar structure to the dry corner region with a length scale proportional to <span>\\(V^{-3/2}\\)</span>. Since steady-state growth of faceted hexagonal nanowires by vapor–liquid–solid growth requires the liquid drop to be commensurate with the underlying wire cross-section, our findings mean that steady-state growth of hexagonal wires is not strictly compatible with an equilibrium liquid drop acting as a catalyst.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10382-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the equilibrium shape of a liquid drop on a hexagonal substrate as motivated by vapor–liquid growth of nanowires. We numerically determine the energy-minimizing liquid drop shape on a hexagonal base using the software Surface Evolver in conjunction with an efficient regridding algorithm and convergence monitoring. The drop shape depends on two nondimensional parameters, the drop volume, and the equilibrium contact angle. We show that sufficiently large drops are well approximated away from the base by a spherical cap drop with geometric parameters determined by the area of the hexagonal base. Notably, however, the drop/base contact region does not extend to the corners of the hexagonal base, even in the limit of large volume V. In particular, there is a self-similar structure to the dry corner region with a length scale proportional to \(V^{-3/2}\). Since steady-state growth of faceted hexagonal nanowires by vapor–liquid–solid growth requires the liquid drop to be commensurate with the underlying wire cross-section, our findings mean that steady-state growth of hexagonal wires is not strictly compatible with an equilibrium liquid drop acting as a catalyst.

Abstract Image

六角形基底上的液滴形状:纳米线气-液-固生长过程中的角脱胶现象
我们以纳米线的气液生长为动机,考虑了六边形基底上液滴的平衡形状。我们使用 Surface Evolver 软件,结合高效的重新网格划分算法和收敛监测,数值确定了六边形基底上的能量最小化液滴形状。液滴形状取决于两个二维参数:液滴体积和平衡接触角。我们的研究表明,足够大的液滴在远离基底的地方可以很好地近似为球形帽滴,其几何参数由六边形基底的面积决定。然而,值得注意的是,液滴/底座接触区域并没有延伸到六边形底座的四角,即使在大体积 V 的极限情况下也是如此。特别是,干角区域存在自相似结构,其长度尺度与 \(V^{-3/2}\) 成比例。由于通过汽-液-固生长法实现的面状六方纳米线的稳态生长要求液滴与底层纳米线的横截面相称,因此我们的发现意味着六方纳米线的稳态生长与作为催化剂的平衡液滴并不完全兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信