{"title":"Lubrication flow in grinding","authors":"Zak Crowson, John Billingham, Paul Houston","doi":"10.1007/s10665-024-10383-x","DOIUrl":null,"url":null,"abstract":"<p>In the machining process known as grinding, fluid is applied to regulate the temperature of the workpiece and reduce the risk of expensive thermal damage. The factors that influence the transport of this grinding fluid are not well understood; however, it is important to gain understanding in order to try to avoid the unnecessary cost incurred from its inefficient application. In this work, we use the method of matched asymptotic expansions to derive the multiscale system of equations that governs the flow. Under the lubrication approximation, we show that it is possible to calculate the flow rate through the grinding zone without having to solve for the flow far from the grinding zone. Additional empirically determined boundary conditions do not need to be imposed. With this lubrication model, we quantify the effect of experimental parameters on the flow field in the grinding zone and study how the flow regime responds to changes in these parameters.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10383-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the machining process known as grinding, fluid is applied to regulate the temperature of the workpiece and reduce the risk of expensive thermal damage. The factors that influence the transport of this grinding fluid are not well understood; however, it is important to gain understanding in order to try to avoid the unnecessary cost incurred from its inefficient application. In this work, we use the method of matched asymptotic expansions to derive the multiscale system of equations that governs the flow. Under the lubrication approximation, we show that it is possible to calculate the flow rate through the grinding zone without having to solve for the flow far from the grinding zone. Additional empirically determined boundary conditions do not need to be imposed. With this lubrication model, we quantify the effect of experimental parameters on the flow field in the grinding zone and study how the flow regime responds to changes in these parameters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.