{"title":"Learning a class of stochastic differential equations via numerics-informed Bayesian denoising","authors":"Zhanpeng Wang, Lijin Wang, Yanzhao Cao","doi":"10.1615/int.j.uncertaintyquantification.2024052020","DOIUrl":null,"url":null,"abstract":"Learning stochastic differential equations (SDEs) from observational data via neural networks is an important means of quantifying uncertainty in dynamical systems. The learning networks are typically built upon denoising the stochastic systems by harnessing their inherent deterministic nature, such as the Fokker-Planck equations related to SDEs. In this paper we propose the numerics-informed denoising by taking expectations on the Euler-Maruyama numerical scheme of SDEs, and then using the Bayesian neural networks (BNNs) to approximate the expectations through variational inference on the weights' posterior distribution. The approximation accuracy of the BNNs is analyzed. Meanwhiles we give a data acquisition method for learning non-autonomous differential equations (NADEs) which respects the time-variant nature of NADEs' flows. Numerical experiments on three models show effectiveness of the proposed methods.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024052020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Learning stochastic differential equations (SDEs) from observational data via neural networks is an important means of quantifying uncertainty in dynamical systems. The learning networks are typically built upon denoising the stochastic systems by harnessing their inherent deterministic nature, such as the Fokker-Planck equations related to SDEs. In this paper we propose the numerics-informed denoising by taking expectations on the Euler-Maruyama numerical scheme of SDEs, and then using the Bayesian neural networks (BNNs) to approximate the expectations through variational inference on the weights' posterior distribution. The approximation accuracy of the BNNs is analyzed. Meanwhiles we give a data acquisition method for learning non-autonomous differential equations (NADEs) which respects the time-variant nature of NADEs' flows. Numerical experiments on three models show effectiveness of the proposed methods.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.