Teresa J. Lorenz, Andrew N. Stillman, Jeffrey M. Kozma, Philip C. Fischer
{"title":"Bias-corrected natal dispersal estimates fill information gaps for White-headed Woodpecker conservation","authors":"Teresa J. Lorenz, Andrew N. Stillman, Jeffrey M. Kozma, Philip C. Fischer","doi":"10.5751/ace-02684-190204","DOIUrl":null,"url":null,"abstract":"<p>Although the White-headed Woodpecker (<em>Dryobates albolarvatus</em>) has been used as a management indicator species to guide forest management in the western U.S., basic information on the dispersal behavior of this species is currently unavailable. However, understanding dispersal can provide key information for management and conservation by revealing the mechanisms by which species colonize new areas and restored habitat. To address this information gap, we tracked the dispersal of juvenile White-headed Woodpeckers from their natal areas to their first spring home range in 2014–2018 and estimated dispersal distances using an interval-censored bias correction method with field observations and aerial telemetry surveys. We also compared habitat features between dispersal locations and spring home ranges. The median bias-corrected dispersal distance was 22.2 km in the fall (95% confidence interval [CI] = 16.4, 29.1 km), with 90% of woodpeckers dispersing >4.8 km (95% CI = 2.7, 8.3 km). The following spring, the median bias-corrected natal dispersal distance was 24.6 km (95% CI = 17.9, 32.3 km), while 10 individuals with full detection histories dispersed a median of 7.7 km to their first breeding locations (range 1.2–23.0 km). Our natal dispersal estimates for juvenile White-headed Woodpeckers were longer than those for most other woodpecker species studied to date. In addition, we found that woodpeckers settled in mid-elevation areas with greater variation in canopy cover compared to dispersal locations. There was no difference in ponderosa pine (<em>Pinus ponderosa</em>) basal area between dispersal tracks and spring home ranges. White-headed Woodpeckers are a species of conservation concern due to habitat loss in western North America, and active management in Washington state seeks to restore overstocked ponderosa pine forests to pre-settlement tree densities which could benefit this woodpecker. Our results inform conservation and forest management efforts by suggesting that dispersing juveniles have the capacity to travel long distances to colonize restored forests.</p>\n<p>The post Bias-corrected natal dispersal estimates fill information gaps for White-headed Woodpecker conservation first appeared on Avian Conservation and Ecology.</p>","PeriodicalId":49233,"journal":{"name":"Avian Conservation and Ecology","volume":"56 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Conservation and Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.5751/ace-02684-190204","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Although the White-headed Woodpecker (Dryobates albolarvatus) has been used as a management indicator species to guide forest management in the western U.S., basic information on the dispersal behavior of this species is currently unavailable. However, understanding dispersal can provide key information for management and conservation by revealing the mechanisms by which species colonize new areas and restored habitat. To address this information gap, we tracked the dispersal of juvenile White-headed Woodpeckers from their natal areas to their first spring home range in 2014–2018 and estimated dispersal distances using an interval-censored bias correction method with field observations and aerial telemetry surveys. We also compared habitat features between dispersal locations and spring home ranges. The median bias-corrected dispersal distance was 22.2 km in the fall (95% confidence interval [CI] = 16.4, 29.1 km), with 90% of woodpeckers dispersing >4.8 km (95% CI = 2.7, 8.3 km). The following spring, the median bias-corrected natal dispersal distance was 24.6 km (95% CI = 17.9, 32.3 km), while 10 individuals with full detection histories dispersed a median of 7.7 km to their first breeding locations (range 1.2–23.0 km). Our natal dispersal estimates for juvenile White-headed Woodpeckers were longer than those for most other woodpecker species studied to date. In addition, we found that woodpeckers settled in mid-elevation areas with greater variation in canopy cover compared to dispersal locations. There was no difference in ponderosa pine (Pinus ponderosa) basal area between dispersal tracks and spring home ranges. White-headed Woodpeckers are a species of conservation concern due to habitat loss in western North America, and active management in Washington state seeks to restore overstocked ponderosa pine forests to pre-settlement tree densities which could benefit this woodpecker. Our results inform conservation and forest management efforts by suggesting that dispersing juveniles have the capacity to travel long distances to colonize restored forests.
The post Bias-corrected natal dispersal estimates fill information gaps for White-headed Woodpecker conservation first appeared on Avian Conservation and Ecology.
期刊介绍:
Avian Conservation and Ecology is an open-access, fully electronic scientific journal, sponsored by the Society of Canadian Ornithologists and Birds Canada. We publish papers that are scientifically rigorous and relevant to the bird conservation community in a cost-effective electronic approach that makes them freely available to scientists and the public in real-time. ACE is a fully indexed ISSN journal that welcomes contributions from scientists all over the world.
While the name of the journal implies a publication niche of conservation AND ecology, we think the theme of conservation THROUGH ecology provides a better sense of our purpose. As such, we are particularly interested in contributions that use a scientifically sound and rigorous approach to the achievement of avian conservation as revealed through insights into ecological principles and processes. Papers are expected to fall along a continuum of pure conservation and management at one end to more pure ecology at the other but our emphasis will be on those contributions with direct relevance to conservation objectives.