High-stability temperature control and frequency-domain analysis of sandwich-like insulation design based on phase change materials for satellite thermal management
{"title":"High-stability temperature control and frequency-domain analysis of sandwich-like insulation design based on phase change materials for satellite thermal management","authors":"ZiHan Wang, ChenBo He, Yang Hu, GuiHua Tang","doi":"10.1007/s11431-023-2597-y","DOIUrl":null,"url":null,"abstract":"<p>High-stability thermal management is critical for the measurements of high sensitivity for temperature, but also challenging because any small thermal disturbances could lead to unacceptable temperature fluctuations. The present work delivers a design for passive temperature control, customized for a component in the satellites for gravitational wave detection. A novel sandwichlike structure is proposed with the configurations of proper materials, consisting of a layer of insulation material and two layers of nanocomposite phase change materials, bringing an integration of heat insulation and absorption/storage. Its performance is examined using an improved thermal network model and the revised transfer function method (TFM). The basic results of the two methods are validated by present COMSOL simulations and available numerical and experimental data in the literature. An effective reduction of temperature fluctuation is achieved to the scale of 0.1 K, even under two thermal disturbances from different directions: a radiative heat flux of 20 W m<sup>−2</sup> (inside) and a temperature fluctuation of about 20 K (outside). Moreover, the TFM is employed to analyze the effects of the frequency of thermal disturbance: excellent damping performance is obtained for over 3.2 mHz and the underlying mechanism is discussed. Overall, the present design is expected to be combined with active temperature control to explore more possible ways for temperature control with higher stability.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"137 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2597-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-stability thermal management is critical for the measurements of high sensitivity for temperature, but also challenging because any small thermal disturbances could lead to unacceptable temperature fluctuations. The present work delivers a design for passive temperature control, customized for a component in the satellites for gravitational wave detection. A novel sandwichlike structure is proposed with the configurations of proper materials, consisting of a layer of insulation material and two layers of nanocomposite phase change materials, bringing an integration of heat insulation and absorption/storage. Its performance is examined using an improved thermal network model and the revised transfer function method (TFM). The basic results of the two methods are validated by present COMSOL simulations and available numerical and experimental data in the literature. An effective reduction of temperature fluctuation is achieved to the scale of 0.1 K, even under two thermal disturbances from different directions: a radiative heat flux of 20 W m−2 (inside) and a temperature fluctuation of about 20 K (outside). Moreover, the TFM is employed to analyze the effects of the frequency of thermal disturbance: excellent damping performance is obtained for over 3.2 mHz and the underlying mechanism is discussed. Overall, the present design is expected to be combined with active temperature control to explore more possible ways for temperature control with higher stability.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.