Technical report: Improving the properties of molecules generated by LIMO

Vineet Thumuluri, Peter Eckmann, Michael K. Gilson, Rose Yu
{"title":"Technical report: Improving the properties of molecules generated by LIMO","authors":"Vineet Thumuluri, Peter Eckmann, Michael K. Gilson, Rose Yu","doi":"arxiv-2407.14968","DOIUrl":null,"url":null,"abstract":"This technical report investigates variants of the Latent Inceptionism on\nMolecules (LIMO) framework to improve the properties of generated molecules. We\nconduct ablative studies of molecular representation, decoder model, and\nsurrogate model training scheme. The experiments suggest that an autogressive\nTransformer decoder with GroupSELFIES achieves the best average properties for\nthe random generation task.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This technical report investigates variants of the Latent Inceptionism on Molecules (LIMO) framework to improve the properties of generated molecules. We conduct ablative studies of molecular representation, decoder model, and surrogate model training scheme. The experiments suggest that an autogressive Transformer decoder with GroupSELFIES achieves the best average properties for the random generation task.
技术报告:改进 LIMO 生成的分子的特性
本技术报告研究了分子上的潜在感知(LIMO)框架的变体,以改进生成分子的特性。我们对分子表示、解码器模型和代理模型训练方案进行了模拟研究。实验结果表明,在随机生成任务中,采用 GroupSELFIES 的自进式变换器解码器可以获得最佳的平均特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信