Ranking protein-protein models with large language models and graph neural networks

Xiaotong Xu, Alexandre M. J. J. Bonvin
{"title":"Ranking protein-protein models with large language models and graph neural networks","authors":"Xiaotong Xu, Alexandre M. J. J. Bonvin","doi":"arxiv-2407.16375","DOIUrl":null,"url":null,"abstract":"Protein-protein interactions (PPIs) are associated with various diseases,\nincluding cancer, infections, and neurodegenerative disorders. Obtaining\nthree-dimensional structural information on these PPIs serves as a foundation\nto interfere with those or to guide drug design. Various strategies can be\nfollowed to model those complexes, all typically resulting in a large number of\nmodels. A challenging step in this process is the identification of good models\n(near-native PPI conformations) from the large pool of generated models. To\naddress this challenge, we previously developed DeepRank-GNN-esm, a graph-based\ndeep learning algorithm for ranking modelled PPI structures harnessing the\npower of protein language models. Here, we detail the use of our software with\nexamples. DeepRank-GNN-esm is freely available at\nhttps://github.com/haddocking/DeepRank-GNN-esm","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interactions (PPIs) are associated with various diseases, including cancer, infections, and neurodegenerative disorders. Obtaining three-dimensional structural information on these PPIs serves as a foundation to interfere with those or to guide drug design. Various strategies can be followed to model those complexes, all typically resulting in a large number of models. A challenging step in this process is the identification of good models (near-native PPI conformations) from the large pool of generated models. To address this challenge, we previously developed DeepRank-GNN-esm, a graph-based deep learning algorithm for ranking modelled PPI structures harnessing the power of protein language models. Here, we detail the use of our software with examples. DeepRank-GNN-esm is freely available at https://github.com/haddocking/DeepRank-GNN-esm
利用大型语言模型和图神经网络对蛋白质-蛋白质模型进行排序
蛋白质与蛋白质之间的相互作用(PPIs)与多种疾病相关,包括癌症、感染和神经退行性疾病。获取这些蛋白质-蛋白质相互作用的三维结构信息是干扰这些相互作用或指导药物设计的基础。建立这些复合物模型的策略多种多样,通常都会产生大量的模型。在这一过程中,具有挑战性的一步是从大量生成的模型中识别出好的模型(接近原生的 PPI 构象)。为了应对这一挑战,我们之前开发了 DeepRank-GNN-esm,这是一种基于图的深度学习算法,利用蛋白质语言模型的能力对建模的 PPI 结构进行排序。在此,我们将结合实例详细介绍软件的使用方法。DeepRank-GNN-esm可在https://github.com/haddocking/DeepRank-GNN-esm 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信