Synthetic High-resolution Cryo-EM Density Maps with Generative Adversarial Networks

Chenwei Zhang, Anne Condon, Khanh Dao Duc
{"title":"Synthetic High-resolution Cryo-EM Density Maps with Generative Adversarial Networks","authors":"Chenwei Zhang, Anne Condon, Khanh Dao Duc","doi":"arxiv-2407.17674","DOIUrl":null,"url":null,"abstract":"Generating synthetic cryogenic electron microscopy (cryo-EM) 3D density maps\nfrom molecular structures has potential important applications in structural\nbiology. Yet existing simulation-based methods cannot mimic all the complex\nfeatures present in experimental maps, such as secondary structure elements. As\nan alternative, we propose struc2mapGAN, a novel data-driven method that\nemploys a generative adversarial network (GAN) to produce high-resolution\nexperimental-like density maps from molecular structures. More specifically,\nstruc2mapGAN uses a U-Net++ architecture as the generator, with an additional\nL1 loss term and further processing of raw experimental maps to enhance\nlearning efficiency. While struc2mapGAN can promptly generate maps after\ntraining, we demonstrate that it outperforms existing simulation-based methods\nfor a wide array of tested maps and across various evaluation metrics. Our code\nis available at https://github.com/chenwei-zhang/struc2mapGAN.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generating synthetic cryogenic electron microscopy (cryo-EM) 3D density maps from molecular structures has potential important applications in structural biology. Yet existing simulation-based methods cannot mimic all the complex features present in experimental maps, such as secondary structure elements. As an alternative, we propose struc2mapGAN, a novel data-driven method that employs a generative adversarial network (GAN) to produce high-resolution experimental-like density maps from molecular structures. More specifically, struc2mapGAN uses a U-Net++ architecture as the generator, with an additional L1 loss term and further processing of raw experimental maps to enhance learning efficiency. While struc2mapGAN can promptly generate maps after training, we demonstrate that it outperforms existing simulation-based methods for a wide array of tested maps and across various evaluation metrics. Our code is available at https://github.com/chenwei-zhang/struc2mapGAN.
利用生成式对抗网络合成高分辨率冷冻电镜密度图
从分子结构生成合成低温电子显微镜(cryo-EM)三维密度图在结构生物学中具有潜在的重要应用。然而,现有的基于模拟的方法无法模拟实验图中存在的所有复杂特征,如二级结构元素。作为一种替代方法,我们提出了 struc2mapGAN,这是一种新颖的数据驱动方法,它利用生成式对抗网络(GAN)从分子结构中生成类似实验的高分辨率密度图。更具体地说,struc2mapGAN 使用 U-Net++ 架构作为生成器,并增加了一个 L1 损失项和对原始实验图的进一步处理,以提高学习效率。虽然 struc2mapGAN 可以在训练后迅速生成地图,但我们证明它在广泛的测试地图和各种评价指标上都优于现有的基于模拟的方法。我们的代码见 https://github.com/chenwei-zhang/struc2mapGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信