The virtual stress boundary method to impose nonconforming Neumann boundary conditions in the material point method

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Joel Given, Yong Liang, Zhixin Zeng, Xiong Zhang, Kenichi Soga
{"title":"The virtual stress boundary method to impose nonconforming Neumann boundary conditions in the material point method","authors":"Joel Given, Yong Liang, Zhixin Zeng, Xiong Zhang, Kenichi Soga","doi":"10.1007/s40571-024-00793-0","DOIUrl":null,"url":null,"abstract":"<p>The material point method (MPM) is a popular and powerful tool for simulating large deformation problems. The hybrid Eulerian–Lagrangian nature of the MPM means that the Lagrangian material points and the Eulerian background mesh are often nonconforming. Once the material and mesh boundaries become misaligned, imposing boundary conditions, such as Neumann boundary conditions (i.e., traction), becomes a challenge. The recently developed virtual stress boundary (VSB) method allows for imposing nonconforming Neumann boundary conditions without explicit knowledge of the boundary position. This is achieved through a problem transformation where the original boundary traction problem is replaced by an equivalent problem featuring a virtual stress field. This equivalent problem results in updated governing equations which are ultimately solved using a combination of particle-wise and cell-wise quadrature. In the current work, a modification to the VSB method is proposed to eliminate the need for cell-wise quadrature. Despite removing cell-wise quadrature, the modified VSB method maintains the accuracy observed in the original approach. Several numerical examples, including 1D and 2D benchmark problems, as well as a 3D demonstration problem, are presented to investigate the accuracy and illustrate the capability of the modified VSB method. Mesh refinement studies are included to show the method’s good convergence behavior.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00793-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The material point method (MPM) is a popular and powerful tool for simulating large deformation problems. The hybrid Eulerian–Lagrangian nature of the MPM means that the Lagrangian material points and the Eulerian background mesh are often nonconforming. Once the material and mesh boundaries become misaligned, imposing boundary conditions, such as Neumann boundary conditions (i.e., traction), becomes a challenge. The recently developed virtual stress boundary (VSB) method allows for imposing nonconforming Neumann boundary conditions without explicit knowledge of the boundary position. This is achieved through a problem transformation where the original boundary traction problem is replaced by an equivalent problem featuring a virtual stress field. This equivalent problem results in updated governing equations which are ultimately solved using a combination of particle-wise and cell-wise quadrature. In the current work, a modification to the VSB method is proposed to eliminate the need for cell-wise quadrature. Despite removing cell-wise quadrature, the modified VSB method maintains the accuracy observed in the original approach. Several numerical examples, including 1D and 2D benchmark problems, as well as a 3D demonstration problem, are presented to investigate the accuracy and illustrate the capability of the modified VSB method. Mesh refinement studies are included to show the method’s good convergence behavior.

Abstract Image

虚拟应力边界法在材料点法中施加不符合新曼边界条件
材料点法(MPM)是模拟大变形问题的一种流行而强大的工具。MPM 的欧拉-拉格朗日混合性质意味着拉格朗日材料点和欧拉背景网格经常不一致。一旦材料和网格边界出现错位,施加边界条件(如诺伊曼边界条件,即牵引力)就成为一项挑战。最近开发的虚拟应力边界(VSB)方法可以在不明确边界位置的情况下施加不符合要求的 Neumann 边界条件。这是通过问题转换实现的,在这种转换中,原始的边界牵引问题被以虚拟应力场为特征的等效问题所取代。这个等效问题会产生更新的控制方程,最终使用粒子正交和单元正交相结合的方法求解。在当前的工作中,我们提出了对 VSB 方法的修改,以消除对单元正交的需求。尽管取消了单元正交,但修改后的 VSB 方法仍保持了原始方法的精度。本文介绍了几个数值示例,包括一维和二维基准问题,以及一个三维演示问题,以研究修改后的 VSB 方法的精度并说明其能力。还包括网格细化研究,以显示该方法的良好收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信