Spectral Convergence of a Semi-discretized Numerical System for the Spatially Homogeneous Boltzmann Equation with Uncertainties

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Liu Liu, Kunlun Qi
{"title":"Spectral Convergence of a Semi-discretized Numerical System for the Spatially Homogeneous Boltzmann Equation with Uncertainties","authors":"Liu Liu, Kunlun Qi","doi":"10.1137/24m1638483","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 812-841, September 2024. <br/> Abstract.In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier spectral method is applied for approximation in the velocity space, whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in Remark 4.4 of [J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150–168].","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/24m1638483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 812-841, September 2024.
Abstract.In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier spectral method is applied for approximation in the velocity space, whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in Remark 4.4 of [J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150–168].
具有不确定性的空间均质玻尔兹曼方程半离散数值系统的谱收敛性
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 812-841, September 2024. 摘要.本文研究了具有不确定性的玻尔兹曼方程,并证明了半离散化数值系统的谱收敛性在速度空间和随机空间的组合中成立,其中傅立叶谱方法用于速度空间的逼近,而基于广义多项式混沌(gPC)的随机伽勒金(SG)方法用于随机变量的离散化。我们的证明基于一个微妙的能量估算,以显示数值解的好求解性,以及在我们精心设计的函数空间中对其负部分的严格控制,该函数空间涉及速度和随机变量的高阶导数。本文严格证明了[J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp.]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信