Neurophysiological evidence for the overview effect: a virtual reality journey into space

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
H. A. T. van Limpt-Broers, M. Postma, E. van Weelden, S. Pratesi, M. M. Louwerse
{"title":"Neurophysiological evidence for the overview effect: a virtual reality journey into space","authors":"H. A. T. van Limpt-Broers, M. Postma, E. van Weelden, S. Pratesi, M. M. Louwerse","doi":"10.1007/s10055-024-01035-7","DOIUrl":null,"url":null,"abstract":"<p>The Overview Effect is a complex experience reported by astronauts after viewing Earth from space. Numerous accounts suggest that it leads to increased interconnectedness to other human beings and environmental awareness, comparable to self-transcendence. It can cause fundamental changes in mental models of the world, improved well-being, and stronger appreciation of, and responsibility for Earth. From a cognitive perspective, it is closely linked to the emotion of awe, possibly triggered by the overwhelming perceived vastness of the universe. Given that most research in the domain focuses on self-reports, little is known about potential neurophysiological markers of the Overview Effect. In the experiment reported here, participants viewed an immersive Virtual Reality simulation of a space journey while their brain activity was recorded using electroencephalography (EEG). Post-experimental self-reports confirmed they were able to experience the Overview Effect in the simulated environment. EEG recordings revealed lower spectral power in beta and gamma frequency bands during the defining moments of the Overview Effect. The decrease in spectral power can be associated with reduced mental processing, and a disruption of known mental structures in this context, thereby providing more evidence for the cognitive effects of the experience.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-01035-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Overview Effect is a complex experience reported by astronauts after viewing Earth from space. Numerous accounts suggest that it leads to increased interconnectedness to other human beings and environmental awareness, comparable to self-transcendence. It can cause fundamental changes in mental models of the world, improved well-being, and stronger appreciation of, and responsibility for Earth. From a cognitive perspective, it is closely linked to the emotion of awe, possibly triggered by the overwhelming perceived vastness of the universe. Given that most research in the domain focuses on self-reports, little is known about potential neurophysiological markers of the Overview Effect. In the experiment reported here, participants viewed an immersive Virtual Reality simulation of a space journey while their brain activity was recorded using electroencephalography (EEG). Post-experimental self-reports confirmed they were able to experience the Overview Effect in the simulated environment. EEG recordings revealed lower spectral power in beta and gamma frequency bands during the defining moments of the Overview Effect. The decrease in spectral power can be associated with reduced mental processing, and a disruption of known mental structures in this context, thereby providing more evidence for the cognitive effects of the experience.

Abstract Image

概览效应的神经生理学证据:虚拟现实太空之旅
据报道,"概览效应 "是宇航员从太空观看地球后的一种复杂体验。许多描述表明,它能增强与其他人的相互联系和环境意识,堪比自我超越。它可以从根本上改变世界的心智模式,改善幸福感,增强对地球的感激之情和责任感。从认知的角度来看,它与敬畏情绪密切相关,可能是由于对浩瀚宇宙的感知过于强烈而引发的。鉴于该领域的大多数研究都集中于自我报告,人们对 "概览效应 "的潜在神经生理标记知之甚少。在本文报告的实验中,参与者观看了身临其境的虚拟现实模拟太空之旅,同时他们的大脑活动被脑电图(EEG)记录下来。实验后的自我报告证实他们在模拟环境中体验到了概述效应。脑电图记录显示,在 "概述效应 "的决定性时刻,β 和 γ 频段的频谱功率较低。频谱功率的降低可能与心理处理过程的减少以及已知心理结构在这种情况下的破坏有关,从而为体验的认知效应提供了更多证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality
Virtual Reality COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.30
自引率
14.30%
发文量
95
审稿时长
>12 weeks
期刊介绍: The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to: Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications Development and evaluation of systems, tools, techniques and software that advance the field, including: Display technologies, including Head Mounted Displays, simulators and immersive displays Haptic technologies, including novel devices, interaction and rendering Interaction management, including gesture control, eye gaze, biosensors and wearables Tracking technologies VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling. Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信