Ali Buwaider, Victor Gabriel El-Hajj, Alessandro Iop, Mario Romero, Walter C Jean, Erik Edström, Adrian Elmi-Terander
{"title":"Augmented reality navigation in external ventricular drain insertion—a systematic review and meta-analysis","authors":"Ali Buwaider, Victor Gabriel El-Hajj, Alessandro Iop, Mario Romero, Walter C Jean, Erik Edström, Adrian Elmi-Terander","doi":"10.1007/s10055-024-01033-9","DOIUrl":null,"url":null,"abstract":"<p>External ventricular drain (EVD) insertion using the freehand technique is often associated with misplacements resulting in unfavorable outcomes. Augmented Reality (AR) has been increasingly used to complement conventional neuronavigation. The accuracy of AR guided EVD insertion has been investigated in several studies, on anthropomorphic phantoms, cadavers, and patients. This review aimed to assess the current knowledge and discuss potential benefits and challenges associated with AR guidance in EVD insertion. MEDLINE, EMBASE, and Web of Science were searched from inception to August 2023 for studies evaluating the accuracy of AR guidance for EVD insertion. Studies were screened for eligibility and accuracy data was extracted. The risk of bias was assessed using the Cochrane Risk of Bias Tool and the quality of evidence was assessed using the Newcastle-Ottawa-Scale. Accuracy was reported either as the average deviation from target or according to the Kakarla grading system. Of the 497 studies retrieved, 14 were included for analysis. All included studies were prospectively designed. Insertions were performed on anthropomorphic phantoms, cadavers, or patients, using several different AR devices and interfaces. Deviation from target ranged between 0.7 and 11.9 mm. Accuracy according to the Kakarla grading scale ranged between 82 and 96%. Accuracy was higher for AR compared to the freehand technique in all studies that had control groups. Current evidence demonstrates that AR is more accurate than free-hand technique for EVD insertion. However, studies are few, the technology developing, and there is a need for further studies on patients in relevant clinical settings.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-01033-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
External ventricular drain (EVD) insertion using the freehand technique is often associated with misplacements resulting in unfavorable outcomes. Augmented Reality (AR) has been increasingly used to complement conventional neuronavigation. The accuracy of AR guided EVD insertion has been investigated in several studies, on anthropomorphic phantoms, cadavers, and patients. This review aimed to assess the current knowledge and discuss potential benefits and challenges associated with AR guidance in EVD insertion. MEDLINE, EMBASE, and Web of Science were searched from inception to August 2023 for studies evaluating the accuracy of AR guidance for EVD insertion. Studies were screened for eligibility and accuracy data was extracted. The risk of bias was assessed using the Cochrane Risk of Bias Tool and the quality of evidence was assessed using the Newcastle-Ottawa-Scale. Accuracy was reported either as the average deviation from target or according to the Kakarla grading system. Of the 497 studies retrieved, 14 were included for analysis. All included studies were prospectively designed. Insertions were performed on anthropomorphic phantoms, cadavers, or patients, using several different AR devices and interfaces. Deviation from target ranged between 0.7 and 11.9 mm. Accuracy according to the Kakarla grading scale ranged between 82 and 96%. Accuracy was higher for AR compared to the freehand technique in all studies that had control groups. Current evidence demonstrates that AR is more accurate than free-hand technique for EVD insertion. However, studies are few, the technology developing, and there is a need for further studies on patients in relevant clinical settings.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.