Pinched Constantly Curved Holomorphic Two-Spheres in the Complex Grassmann Manifolds

IF 1.1 3区 数学 Q1 MATHEMATICS
Jie Fei, Jun Wang
{"title":"Pinched Constantly Curved Holomorphic Two-Spheres in the Complex Grassmann Manifolds","authors":"Jie Fei, Jun Wang","doi":"10.1007/s00025-024-02236-x","DOIUrl":null,"url":null,"abstract":"<p>In the recent paper (Wang et al. in Differ Geom Appl 80:101840, 2022), the authors and Xu have established a Simons-type integral inequality for holomorphic curves in a complex Grassmann manifold <i>G</i>(<i>k</i>, <i>N</i>). In this paper, we completely classify holomorphic immersions from the two-sphere of constant curvature into <i>G</i>(3, <i>N</i>) with the norm of the second fundamental form satisfying the equality case of the inequality and prove that any such immersion can be decomposed as the “direct sum” of some “foundation stones” up to congruence.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02236-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the recent paper (Wang et al. in Differ Geom Appl 80:101840, 2022), the authors and Xu have established a Simons-type integral inequality for holomorphic curves in a complex Grassmann manifold G(kN). In this paper, we completely classify holomorphic immersions from the two-sphere of constant curvature into G(3, N) with the norm of the second fundamental form satisfying the equality case of the inequality and prove that any such immersion can be decomposed as the “direct sum” of some “foundation stones” up to congruence.

复格拉斯曼流形中的捏合恒定弯曲全态双球面
在最近的论文(Wang et al. in Differ Geom Appl 80:101840, 2022)中,作者和徐建立了复格拉斯曼流形G(k, N)中全形曲线的西蒙斯型积分不等式。在本文中,我们将从恒定曲率的二球面到 G(3, N) 的全形浸入完全分类,其第二基本形式的规范满足不等式的相等情况,并证明任何这样的浸入都可以分解为一些 "基石 "的 "直接和",直到全等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信