{"title":"Pinched Constantly Curved Holomorphic Two-Spheres in the Complex Grassmann Manifolds","authors":"Jie Fei, Jun Wang","doi":"10.1007/s00025-024-02236-x","DOIUrl":null,"url":null,"abstract":"<p>In the recent paper (Wang et al. in Differ Geom Appl 80:101840, 2022), the authors and Xu have established a Simons-type integral inequality for holomorphic curves in a complex Grassmann manifold <i>G</i>(<i>k</i>, <i>N</i>). In this paper, we completely classify holomorphic immersions from the two-sphere of constant curvature into <i>G</i>(3, <i>N</i>) with the norm of the second fundamental form satisfying the equality case of the inequality and prove that any such immersion can be decomposed as the “direct sum” of some “foundation stones” up to congruence.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02236-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the recent paper (Wang et al. in Differ Geom Appl 80:101840, 2022), the authors and Xu have established a Simons-type integral inequality for holomorphic curves in a complex Grassmann manifold G(k, N). In this paper, we completely classify holomorphic immersions from the two-sphere of constant curvature into G(3, N) with the norm of the second fundamental form satisfying the equality case of the inequality and prove that any such immersion can be decomposed as the “direct sum” of some “foundation stones” up to congruence.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.