ANN-based evaluation system for erosion resistant highway shoulder rocks

IF 2.6 Q2 ENGINEERING, GEOLOGICAL
Aiman Tariq, Basil Abualshar, Babur Deliktas, Chung R. Song, Bashar Al-Nimri, Bruce Barret, Alex Silvey, Nikolas Glennie
{"title":"ANN-based evaluation system for erosion resistant highway shoulder rocks","authors":"Aiman Tariq, Basil Abualshar, Babur Deliktas, Chung R. Song, Bashar Al-Nimri, Bruce Barret, Alex Silvey, Nikolas Glennie","doi":"10.1186/s40703-024-00216-2","DOIUrl":null,"url":null,"abstract":"<p>Highway shoulder rocks are exposed to continuous erosion force due to extreme rainfall that could be caused by global warming to some extent. However, the logical design method for erosion-resistant highway shoulder is not well-researched yet. This study utilized a large-scale UNLETB (University of Nebraska Lincoln–Erosion Testing Bed) with a 7.6 cm nozzle width and a 4000 cm<sup>3</sup>/sec flow rate to study the erosion characteristics of highway shoulder rocks. Test results showed that different shoulder materials currently used had vastly diverse erosion resistance. However, the clear criteria between the erosion-resistant gradation and other gradation could not be determined easily. Then, this study trained ANN (Artificial Neural Network) with test results to conveniently distinguish the erosion resistance of rocks from other rocks. The ANN predicted the acceptable/non-acceptable erosion characteristics of shoulder rocks with close to 99% accuracy based on the three gradation parameters (D<sub>10</sub>, D<sub>30</sub>, and D<sub>60</sub>).</p>","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40703-024-00216-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highway shoulder rocks are exposed to continuous erosion force due to extreme rainfall that could be caused by global warming to some extent. However, the logical design method for erosion-resistant highway shoulder is not well-researched yet. This study utilized a large-scale UNLETB (University of Nebraska Lincoln–Erosion Testing Bed) with a 7.6 cm nozzle width and a 4000 cm3/sec flow rate to study the erosion characteristics of highway shoulder rocks. Test results showed that different shoulder materials currently used had vastly diverse erosion resistance. However, the clear criteria between the erosion-resistant gradation and other gradation could not be determined easily. Then, this study trained ANN (Artificial Neural Network) with test results to conveniently distinguish the erosion resistance of rocks from other rocks. The ANN predicted the acceptable/non-acceptable erosion characteristics of shoulder rocks with close to 99% accuracy based on the three gradation parameters (D10, D30, and D60).

Abstract Image

基于 ANN 的公路路肩抗侵蚀岩石评估系统
公路路肩岩石因极端降雨而受到持续侵蚀,这在一定程度上可能是全球变暖造成的。然而,抗侵蚀公路路肩的合理设计方法尚未得到充分研究。本研究利用喷嘴宽度为 7.6 厘米、流速为 4000 立方厘米/秒的大型 UNLETB(内布拉斯加大学林肯分校-侵蚀试验台)来研究高速公路路肩岩石的侵蚀特性。测试结果表明,目前使用的不同路肩材料的抗侵蚀能力存在很大差异。然而,抗侵蚀级配与其他级配之间的明确标准并不容易确定。因此,本研究利用测试结果训练了人工神经网络(ANN),以方便区分岩石和其他岩石的抗侵蚀性。根据三个级配参数(D10、D30 和 D60),ANN 预测肩石可接受/不可接受侵蚀特性的准确率接近 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Geo-Engineering
International Journal of Geo-Engineering ENGINEERING, GEOLOGICAL-
CiteScore
3.70
自引率
0.00%
发文量
10
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信