FedST: secure federated shapelet transformation for time series classification

Zhiyu Liang, Hongzhi Wang
{"title":"FedST: secure federated shapelet transformation for time series classification","authors":"Zhiyu Liang, Hongzhi Wang","doi":"10.1007/s00778-024-00865-w","DOIUrl":null,"url":null,"abstract":"<p>This paper explores how to build a shapelet-based time series classification (TSC) model in the federated learning (FL) scenario, that is, using more data from multiple owners without actually sharing the data. We propose FedST, a novel federated TSC framework extended from a centralized shapelet transformation method. We recognize the federated shapelet search step as the kernel of FedST. Thus, we design a basic protocol for the FedST kernel that we prove to be secure and accurate. However, we identify that the basic protocol suffers from efficiency bottlenecks and the centralized acceleration techniques lose their efficacy due to the security issues. To speed up the federated protocol with security guarantee, we propose several optimizations tailored for the FL setting. Our theoretical analysis shows that the proposed methods are secure and more efficient. We conduct extensive experiments using both synthetic and real-world datasets. Empirical results show that our FedST solution is effective in terms of TSC accuracy, and the proposed optimizations can achieve three orders of magnitude of speedup.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-024-00865-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores how to build a shapelet-based time series classification (TSC) model in the federated learning (FL) scenario, that is, using more data from multiple owners without actually sharing the data. We propose FedST, a novel federated TSC framework extended from a centralized shapelet transformation method. We recognize the federated shapelet search step as the kernel of FedST. Thus, we design a basic protocol for the FedST kernel that we prove to be secure and accurate. However, we identify that the basic protocol suffers from efficiency bottlenecks and the centralized acceleration techniques lose their efficacy due to the security issues. To speed up the federated protocol with security guarantee, we propose several optimizations tailored for the FL setting. Our theoretical analysis shows that the proposed methods are secure and more efficient. We conduct extensive experiments using both synthetic and real-world datasets. Empirical results show that our FedST solution is effective in terms of TSC accuracy, and the proposed optimizations can achieve three orders of magnitude of speedup.

Abstract Image

FedST:用于时间序列分类的安全联合小形变换
本文探讨了如何在联合学习(FL)场景中建立基于小形的时间序列分类(TSC)模型,即在不实际共享数据的情况下使用来自多个所有者的更多数据。我们提出了 FedST,这是一种从集中式小形变换方法扩展而来的新型联盟 TSC 框架。我们将联合小形搜索步骤视为 FedST 的内核。因此,我们为 FedST 内核设计了一个基本协议,并证明了该协议的安全性和准确性。然而,我们发现该基本协议存在效率瓶颈,集中加速技术也因安全问题而失去了功效。为了在保证安全的前提下加速联合协议,我们提出了几种针对 FL 设置的优化方案。我们的理论分析表明,所提出的方法既安全又高效。我们使用合成数据集和真实数据集进行了大量实验。实证结果表明,我们的 FedST 解决方案在 TSC 准确性方面是有效的,所提出的优化方案可以实现三个数量级的提速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信