A characterization of a hyperplane in two-phase heat conductorsu

IF 0.7 4区 数学 Q2 MATHEMATICS
Cavallina,Lorenzo, Sakaguchi,Shigeru, Udagawa,Seiichi
{"title":"A characterization of a hyperplane in two-phase heat conductorsu","authors":"Cavallina,Lorenzo, Sakaguchi,Shigeru, Udagawa,Seiichi","doi":"10.4310/cag.2023.v31.n7.a9","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1. Suppose that the interface is connected and uniformly of class $C^{6}$. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1. Suppose that the interface is connected and uniformly of class $C^{6}$. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.
双相热导体中超平面的特征u
我们考虑在整个欧几里得空间中的热扩散方程的考奇问题,该空间由两种具有不同恒定传导性的介质组成,其中一种介质的初始温度为 0,另一种介质的初始温度为 1。假设界面是连通的,且均匀属于 $C^{6}$。我们将证明,如果界面具有时变恒温,那么它一定是一个超平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信