On the moduli space of asymptotically flat manifolds with boundary and the constraint equations

IF 0.7 4区 数学 Q2 MATHEMATICS
Hirsch,Sven, Lesourd,Martin
{"title":"On the moduli space of asymptotically flat manifolds with boundary and the constraint equations","authors":"Hirsch,Sven, Lesourd,Martin","doi":"10.4310/cag.2023.v31.n7.a8","DOIUrl":null,"url":null,"abstract":"Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\\mathbb{R}^{3}\\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\mathbb{R}^{3}\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.
关于有边界的渐近平坦流形的模空间和约束方程
卡尔洛托-李(Carlotto-Li)将马克斯关于封闭 3 美元网格上正标量曲率 $R>0$ 度量的路径连通性结果推广到了具有 $R>0$ 和平均凸边界 $H>0$ 的紧凑 3 美元网格的情况。利用他们的结果,我们证明了在 $\mathbb{R}^{3}\backslash B^{3}$ 上具有非负标量曲率和平均凸边界的渐近平坦度量空间是路径相连的。这个论证绕过了瑟夫定理,瑟夫定理曾在马克斯的证明中使用过,但在存在边界的情况下变得不适用了。我们还证明了一类具有边缘外困边界的最大初始数据集的路径连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信