{"title":"On the moduli space of asymptotically flat manifolds with boundary and the constraint equations","authors":"Hirsch,Sven, Lesourd,Martin","doi":"10.4310/cag.2023.v31.n7.a8","DOIUrl":null,"url":null,"abstract":"Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\\mathbb{R}^{3}\\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\mathbb{R}^{3}\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.