Euler class of taut foliations and Dehn filling

IF 0.7 4区 数学 Q2 MATHEMATICS
Hu,Ying
{"title":"Euler class of taut foliations and Dehn filling","authors":"Hu,Ying","doi":"10.4310/cag.2023.v31.n7.a5","DOIUrl":null,"url":null,"abstract":"In this article, we study the Euler class of taut foliations on the Dehn fillings of a $\\mathbb{Q}$-homology solid torus. We give a necessary and sufficient condition for the Euler class of a foliation transverse to the core of the filling solid torus to vanish. We apply this condition to taut\nfoliations on Dehn fillings of hyperbolic fibered manifolds and obtain many new left-orderable Dehn filling slopes on these manifolds. For instance, we show that when $X$ is the exterior of the pretzel knot $P(-2,3,2r+1)$, for $r\\geq 3$, $\\pi _{1}(X(\\alpha _{n}))$ is left-orderable for a sequence of positive slopes $\\alpha _{n}$ with $\\alpha _{0} =2g-2$ and $\\alpha _{n}\\to 2g-1$. Lastly, we prove that given any $\\mathbb{Q}$-homology solid torus, the set of slopes for which the corresponding Dehn fillings admit a taut foliation transverse to the core with zero Euler class is nowhere dense in $\\mathbb{R}\\cup \\{\\frac{1}{0}\\}$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"66 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the Euler class of taut foliations on the Dehn fillings of a $\mathbb{Q}$-homology solid torus. We give a necessary and sufficient condition for the Euler class of a foliation transverse to the core of the filling solid torus to vanish. We apply this condition to taut foliations on Dehn fillings of hyperbolic fibered manifolds and obtain many new left-orderable Dehn filling slopes on these manifolds. For instance, we show that when $X$ is the exterior of the pretzel knot $P(-2,3,2r+1)$, for $r\geq 3$, $\pi _{1}(X(\alpha _{n}))$ is left-orderable for a sequence of positive slopes $\alpha _{n}$ with $\alpha _{0} =2g-2$ and $\alpha _{n}\to 2g-1$. Lastly, we prove that given any $\mathbb{Q}$-homology solid torus, the set of slopes for which the corresponding Dehn fillings admit a taut foliation transverse to the core with zero Euler class is nowhere dense in $\mathbb{R}\cup \{\frac{1}{0}\}$.
绷紧叶面的欧拉类和 Dehn 填充
在这篇文章中,我们研究了$\mathbb{Q}$同调实体环的德恩填充上的紧绷叶子的欧拉类。我们给出了一个必要条件和充分条件,即横向于填充实体环核心的叶状的欧拉类消失。我们将这一条件应用于双曲纤维流形的 Dehn 填充上的紧绷叶片,并在这些流形上得到了许多新的可左阶 Dehn 填充斜面。例如,我们证明了当$X$是椒盐结$P(-2,3,2r+1)$的外部时,对于$r\geq 3$,$\pi _{1}(X(\alpha _{n}))$对于正斜率$\alpha _{n}$的序列是可左阶的,其中$\alpha _{0}=2g-2$和$\alpha _{n}/到2g-1$。最后,我们证明了给定任意 $\mathbb{Q}$-homology solid torus,其相应的 Dehn fillings 承认一个横向于核心且欧拉级为零的紧绷折叶的斜率集合在 $\mathbb{R}\cup \\{\frac{1}{0}\}$中是无处密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信