Mass of asymptotically flat 3-manifolds with boundary

Pub Date : 2024-07-26 DOI:10.4310/cag.2023.v31.n7.a1
Hirsch,Sven, Miao,Pengzi, Tsang,Tin-Yau
{"title":"Mass of asymptotically flat 3-manifolds with boundary","authors":"Hirsch,Sven, Miao,Pengzi, Tsang,Tin-Yau","doi":"10.4310/cag.2023.v31.n7.a1","DOIUrl":null,"url":null,"abstract":"We study the mass of asymptotically flat $3$-manifolds with boundary using the method of Bray-Kazaras-Khuri-Stern \\cite{BKKS}. More precisely, we derive a mass formula on the union of an asymptotically flat manifold and fill-ins of its boundary, and give new sufficient conditions guaranteeing the positivity of the mass. Motivation to such consideration comes from studying the quasi-local mass of the boundary surface. If the boundary isometrically embeds in the Euclidean space, we apply the formula to obtain convergence of the Brown-York mass along large surfaces tending to $\\infty$ which include the scaling of any fixed coordinate-convex surface.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the mass of asymptotically flat $3$-manifolds with boundary using the method of Bray-Kazaras-Khuri-Stern \cite{BKKS}. More precisely, we derive a mass formula on the union of an asymptotically flat manifold and fill-ins of its boundary, and give new sufficient conditions guaranteeing the positivity of the mass. Motivation to such consideration comes from studying the quasi-local mass of the boundary surface. If the boundary isometrically embeds in the Euclidean space, we apply the formula to obtain convergence of the Brown-York mass along large surfaces tending to $\infty$ which include the scaling of any fixed coordinate-convex surface.
分享
查看原文
有边界的渐近平坦三漫游体的质量
我们用布雷-卡扎拉斯-胡里-斯特恩(Bray-Kazaras-Khuri-Stern \cite{BKKS})的方法研究了带边界的渐近平坦 3 美元流形的质量。更确切地说,我们推导了一个关于渐近平坦流形与其边界填充物结合的质量公式,并给出了保证质量正向性的新充分条件。这种考虑的动机来自于对边界曲面准局部质量的研究。如果边界等距地嵌入欧几里得空间,我们应用公式得到布朗-约克质量沿着趋向于$\infty$的大曲面收敛,其中包括任何固定坐标凸面的缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信