Integrating Ensemble Kalman Filter with AI-based Weather Prediction Model ClimaX

Shunji Kotsuki, Kenta Shiraishi, Atsushi Okazaki
{"title":"Integrating Ensemble Kalman Filter with AI-based Weather Prediction Model ClimaX","authors":"Shunji Kotsuki, Kenta Shiraishi, Atsushi Okazaki","doi":"arxiv-2407.17781","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI)-based weather prediction research is growing\nrapidly and has shown to be competitive with the advanced dynamic numerical\nweather prediction models. However, research combining AI-based weather\nprediction models with data assimilation remains limited partially because\nlong-term sequential data assimilation cycles are required to evaluate data\nassimilation systems. This study explores integrating the local ensemble\ntransform Kalman filter (LETKF) with an AI-based weather prediction model\nClimaX. Our experiments demonstrated that the ensemble data assimilation cycled\nstably for the AI-based weather prediction model using covariance inflation and\nlocalization techniques inside the LETKF. While ClimaX showed some limitations\nin capturing flow-dependent error covariance compared to dynamical models, the\nAI-based ensemble forecasts provided reasonable and beneficial error covariance\nin sparsely observed regions. These findings highlight the potential of AI\nmodels in weather forecasting and the importance of physical consistency and\naccurate error growth representation in improving ensemble data assimilation.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI)-based weather prediction research is growing rapidly and has shown to be competitive with the advanced dynamic numerical weather prediction models. However, research combining AI-based weather prediction models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to evaluate data assimilation systems. This study explores integrating the local ensemble transform Kalman filter (LETKF) with an AI-based weather prediction model ClimaX. Our experiments demonstrated that the ensemble data assimilation cycled stably for the AI-based weather prediction model using covariance inflation and localization techniques inside the LETKF. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models, the AI-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. These findings highlight the potential of AI models in weather forecasting and the importance of physical consistency and accurate error growth representation in improving ensemble data assimilation.
将集合卡尔曼滤波器与人工智能天气预报模型 ClimaX 相结合
基于人工智能(AI)的天气预报研究发展迅速,并已显示出与先进的动态数值天气预报模式的竞争力。然而,将基于人工智能的天气预报模型与数据同化相结合的研究仍然有限,部分原因是评估数据同化系统需要长期连续的数据同化周期。本研究探讨了将本地集合变换卡尔曼滤波器(LETKF)与基于人工智能的天气预报模型ClimaX相结合的问题。实验证明,在 LETKF 中使用协方差膨胀和定位技术,基于人工智能的天气预报模型的集合数据同化循环是稳定的。虽然与动力学模型相比,ClimaX 在捕捉随气流变化的误差协方差方面表现出一定的局限性,但基于人工智能的集合预报在观测稀少的区域提供了合理且有益的误差协方差。这些发现凸显了人工智能模型在天气预报中的潜力,以及物理一致性和准确的误差增长表示对改进集合数据同化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信