{"title":"Optimization of Laser Welded Joints of Steel/Al with Pre-placed High-Entropy Alloy Powder","authors":"Xinran Zhang, Yonghuan Guo, Xiying Fan, Zhiwei Zhu, Lanfeng Zhang","doi":"10.1007/s12541-024-01080-x","DOIUrl":null,"url":null,"abstract":"<p>This study optimized the laser welding process parameters of steel/Al by combining the Support Vector Machine model optimized by the Coati Optimization Algorithm (COA-SVM) with the Multi-Objective Cuckoo Search algorithm (MOCS), and the FeCoNiCrTi high-entropy alloy (HEA) powder was used as a filler metal to connect 5052 aluminum alloy with DP780 dual phase steel by laser welding. Using optical microscope and scanning electron microscope equipped with energy-dispersive spectroscopy to analyze the changes in joint structure and fracture morphology before and after adding HEA. The results showed that the optimized weld width decreased by 28.06% and the weld depth increased by 29.76%. The addition of HEA suppressed the Fe–Al mutual diffusion and significantly reduced the intermetallic compounds (IMCs) layer thickness. Some HEA elements participated in the reaction between Fe/Al, forming new phases such as Al<sub>5</sub>FeNi, which increases ductility compared to the original phase. The maximum tensile force measured can reach 815 N. Compared with the absence of HEA, the maximum tensile force of the joint increased by 35.2%, and the fracture mode changed from brittle fracture to semi-brittle fracture.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01080-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study optimized the laser welding process parameters of steel/Al by combining the Support Vector Machine model optimized by the Coati Optimization Algorithm (COA-SVM) with the Multi-Objective Cuckoo Search algorithm (MOCS), and the FeCoNiCrTi high-entropy alloy (HEA) powder was used as a filler metal to connect 5052 aluminum alloy with DP780 dual phase steel by laser welding. Using optical microscope and scanning electron microscope equipped with energy-dispersive spectroscopy to analyze the changes in joint structure and fracture morphology before and after adding HEA. The results showed that the optimized weld width decreased by 28.06% and the weld depth increased by 29.76%. The addition of HEA suppressed the Fe–Al mutual diffusion and significantly reduced the intermetallic compounds (IMCs) layer thickness. Some HEA elements participated in the reaction between Fe/Al, forming new phases such as Al5FeNi, which increases ductility compared to the original phase. The maximum tensile force measured can reach 815 N. Compared with the absence of HEA, the maximum tensile force of the joint increased by 35.2%, and the fracture mode changed from brittle fracture to semi-brittle fracture.
本研究通过科蒂优化算法(COA-SVM)优化的支持向量机模型与多目标布谷鸟搜索算法(MOCS)相结合,优化了钢/铝的激光焊接工艺参数,并采用FeCoNiCrTi高熵合金(HEA)粉末作为填充金属,将5052铝合金与DP780双相钢进行激光焊接连接。利用光学显微镜和扫描电子显微镜,并配备能量色散光谱仪,分析添加 HEA 前后接头结构和断口形貌的变化。结果表明,优化后的焊缝宽度减少了 28.06%,焊缝深度增加了 29.76%。HEA 的加入抑制了铁铝的相互扩散,并显著降低了金属间化合物(IMC)层的厚度。一些 HEA 元素参与了铁/铝之间的反应,形成了 Al5FeNi 等新相,与原始相相比增加了延展性。测得的最大拉力可达 815 N。与不含 HEA 的情况相比,接头的最大拉力增加了 35.2%,断裂模式从脆性断裂变为半脆性断裂。
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.