Yulius Shan Romario, Chinmai Bhat, Seto Agung Riyanto, Samuel Bobby Sanjoto, Ehsan Toyserkani, Maziar Ramezani, Cho-Pei Jiang
{"title":"Implementation of Conceptual Design and Taguchi Optimization Method for the Construction of Multi-Resin 3D Printer","authors":"Yulius Shan Romario, Chinmai Bhat, Seto Agung Riyanto, Samuel Bobby Sanjoto, Ehsan Toyserkani, Maziar Ramezani, Cho-Pei Jiang","doi":"10.1007/s12541-024-01050-3","DOIUrl":null,"url":null,"abstract":"<p>This study proposes the step-wise procedures involved in the development and fabrication of indigenous multi-resin 3D printer using vat photopolymerization process. The demand for simultaneous (i.e. single step) fabrication of multi-material intricate designs is exponentially increasing in the customization industries. The step-wise procedure involves the utilization of conceptual design approach to evaluate various sub-functions and their available solutions. Upon successfully identifying the sub-functions, their solutions, and the inter-dependency involved, three different types of multi-resin 3D printers are being be designed. Among the three proposed multi-resin 3D printer designs, the most optimized one is selected through the Verein Deutscher Ingenieure (VDI) 2225 guidelines. During the feasibility analysis as per the VDI 2225 guidelines, equal importance is given to the technical and economic aspects. Upon selection, the 3D printer is indigenously constructed using the locally available components and equipment. Moreover, the Taguchi method of level-3 is used to evaluate the best printing parameters for two different resins namely: DK-W (Dark-Water washable) and LT-W Light-Water washable). Furthermore, post-curing shrinkage analysis is carried out to examine the dimensional discrepancies. The excellent performance of the proposed printer was demonstrated by satisfactory printing of complex geometrical parts: Mobius ring and a ball inside a cage with acceptable accuracies.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01050-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes the step-wise procedures involved in the development and fabrication of indigenous multi-resin 3D printer using vat photopolymerization process. The demand for simultaneous (i.e. single step) fabrication of multi-material intricate designs is exponentially increasing in the customization industries. The step-wise procedure involves the utilization of conceptual design approach to evaluate various sub-functions and their available solutions. Upon successfully identifying the sub-functions, their solutions, and the inter-dependency involved, three different types of multi-resin 3D printers are being be designed. Among the three proposed multi-resin 3D printer designs, the most optimized one is selected through the Verein Deutscher Ingenieure (VDI) 2225 guidelines. During the feasibility analysis as per the VDI 2225 guidelines, equal importance is given to the technical and economic aspects. Upon selection, the 3D printer is indigenously constructed using the locally available components and equipment. Moreover, the Taguchi method of level-3 is used to evaluate the best printing parameters for two different resins namely: DK-W (Dark-Water washable) and LT-W Light-Water washable). Furthermore, post-curing shrinkage analysis is carried out to examine the dimensional discrepancies. The excellent performance of the proposed printer was demonstrated by satisfactory printing of complex geometrical parts: Mobius ring and a ball inside a cage with acceptable accuracies.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.