Explaining Decisions in ML Models: a Parameterized Complexity Analysis

Sebastian Ordyniak, Giacomo Paesani, Mateusz Rychlicki, Stefan Szeider
{"title":"Explaining Decisions in ML Models: a Parameterized Complexity Analysis","authors":"Sebastian Ordyniak, Giacomo Paesani, Mateusz Rychlicki, Stefan Szeider","doi":"arxiv-2407.15780","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive theoretical investigation into the\nparameterized complexity of explanation problems in various machine learning\n(ML) models. Contrary to the prevalent black-box perception, our study focuses\non models with transparent internal mechanisms. We address two principal types\nof explanation problems: abductive and contrastive, both in their local and\nglobal variants. Our analysis encompasses diverse ML models, including Decision\nTrees, Decision Sets, Decision Lists, Ordered Binary Decision Diagrams, Random\nForests, and Boolean Circuits, and ensembles thereof, each offering unique\nexplanatory challenges. This research fills a significant gap in explainable AI\n(XAI) by providing a foundational understanding of the complexities of\ngenerating explanations for these models. This work provides insights vital for\nfurther research in the domain of XAI, contributing to the broader discourse on\nthe necessity of transparency and accountability in AI systems.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive theoretical investigation into the parameterized complexity of explanation problems in various machine learning (ML) models. Contrary to the prevalent black-box perception, our study focuses on models with transparent internal mechanisms. We address two principal types of explanation problems: abductive and contrastive, both in their local and global variants. Our analysis encompasses diverse ML models, including Decision Trees, Decision Sets, Decision Lists, Ordered Binary Decision Diagrams, Random Forests, and Boolean Circuits, and ensembles thereof, each offering unique explanatory challenges. This research fills a significant gap in explainable AI (XAI) by providing a foundational understanding of the complexities of generating explanations for these models. This work provides insights vital for further research in the domain of XAI, contributing to the broader discourse on the necessity of transparency and accountability in AI systems.
解释 ML 模型中的决策:参数化复杂性分析
本文对各种机器学习(ML)模型中解释问题的参数化复杂性进行了全面的理论研究。与盛行的黑箱观念相反,我们的研究侧重于内部机制透明的模型。我们研究了两种主要类型的解释问题:归纳和对比,包括局部和全局变体。我们的分析涵盖多种 ML 模型,包括决策树、决策集、决策列表、有序二元决策图、随机森林和布尔电路,以及它们的集合,每种模型都提出了独特的解释性挑战。这项研究填补了可解释人工智能(XAI)领域的重大空白,提供了对这些模型生成解释的复杂性的基础性理解。这项工作为 XAI 领域的进一步研究提供了至关重要的见解,为更广泛地讨论人工智能系统中透明度和问责制的必要性做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信